|试卷下载
终身会员
搜索
    上传资料 赚现金
    北师大初中数学九年级上册期中测试卷(困难)(含答案解析)
    立即下载
    加入资料篮
    北师大初中数学九年级上册期中测试卷(困难)(含答案解析)01
    北师大初中数学九年级上册期中测试卷(困难)(含答案解析)02
    北师大初中数学九年级上册期中测试卷(困难)(含答案解析)03
    还剩24页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北师大初中数学九年级上册期中测试卷(困难)(含答案解析)

    展开
    这是一份北师大初中数学九年级上册期中测试卷(困难)(含答案解析),共27页。

    北师大初中数学九年级上册期中测试卷
    考试范围:第一 二 三章 考试时间 :120分钟 总分 :120分
    第I卷(选择题)
    一、选择题(本大题共12小题,共36.0分。在每小题列出的选项中,选出符合题目的一项)
    1.如图,正方形ABCD中,BE=FC,CF=2FD,AE,BF交于点G,连接AF,给出下列结论:

    ①AE⊥BF;②AE=BF;③BG=43GE;④S四边形CEGF=S△ABG.
    其中正确的个数为
    (    )
    A. 1个 B. 2个 C. 3个 D. 4个
    2.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连接EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则S正方形ABCDS正方形EFGH的值是(    )
    A. 1+ 2
    B. 2+ 2
    C. 5- 2
    D. 154
    3.已知方程x2-2023x+1=0的两根分别为x1,x2,则x12-2023x2的值为.(    )
    A. 1 B. 2023 C. -1 D. -2023
    4.x=-5± 52+4×3×12×3是下列哪个一元二次方程的根(    )
    A. 3x2+5x+1=0 B. 3x2-5x+1=0 C. 3x2-5x-1=0 D. 3x2+5x-1=0
    5.若关于x的方程kx2+4x-1=0有实数根,则k的取值范围是
        (    )
    A. k≥-4 且k≠0 B.    k≥-4 C. k>-4且k≠0   D. k>-4
    6.一项“过关游戏”规定:若闯第n关需将一颗质地均匀的骰子抛掷n次,如果闯第n关时所抛出的所有点数之和大于34n2,则算闯关成功;否则闯关失败.下列说法中正确的是
    (    )
    A. 过第一关的概率是34 B. 过第三关的概率是1136
    C. 过第二关的概率是1112 D. 过第六关是不可能的
    7.在一个暗箱里放有m个除颜色外完全相同的球,这m个球中红球只有4个,每次将球充分摇匀后,随机从中摸出一球,记下颜色后放回,通过大量的重复试验后发现,摸到红球的频率为0.4,由此可以推算出m约为(    )
    A. 7 B. 3 C. 10 D. 6
    8.小明抛掷两枚图钉,想知道针尖朝上的概率大概是多少,以下做法可行的是(    )
    A. 因为图钉是一样的,故只需抛掷一枚图钉计算朝上的概率即可
    B. 同时向上抛掷10次,发现6次针尖朝上,则针尖朝上的概率是35
    C. 同时向上抛掷2000次,多次计算针尖朝上的频率,再根据频率估计概率
    D. 用树状图或表格求概率
    9.对于一元二次方程ax2+bx+c=0a≠0,下列说法:
    ①若a+b+c=0,则b2-4ac≥0;
    ②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0a≠0必有两个不相等的实根;
    ③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;
    ④若x0是一元二次方程ax2+bx+c=0的根,则b2-4ac=2ax0+b2.
    其中正确的有
    (    )
    A. 1个 B. 2个 C. 3个 D. 4个
    10.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B、C重合),过点C作CN垂直DM交AB于点N,连结OM、ON、MN.下列四个结论:
    ①S四边形ABCD=4S四边形ONBM;
    ②BM2+CM2=2ON2;
    ③△CON≌△DOM;
    ④若AB=2,则S△OMN的最小值是1.
    其中正确结论是(    )


    A. ①②③ B. ①③④ C. ①②④ D. ②③④
    11.把一张宽为1cm的矩形纸片ABCD折叠成如图所示的图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为(    )


    A. 7+3 2 B. 7+4 2 C. 8+3 2 D. 8+4 2
    12.如图,在正方形ABCD中,AB=4,E为对角线AC上与点A,C不重合的一个动点,过点E作EF⊥AB于点F,EG⊥BC于点G,连接DE,FG,下列结论:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值为3,其中正确的结论是(    )


    A. ①②③ B. ①②④ C. ②③④ D. ①②③④
    第II卷(非选择题)
    二、填空题(本大题共4小题,共12.0分)
    13.如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为______.


    14.已知方程x2-2x-5=0的两个根是m和n,则2m+4n-n2的值为______ .
    15.α,β为关于x的一元二次方程x2- 10x+2=0的两个根,则代数式2α2+β2+ 10β-3的值为______ .
    16.我们去游泳馆游泳,首先必须要换拖鞋,如果大桶里只剩下尺码相同的2双红色拖鞋和1双蓝色拖鞋混放在一起,闭上眼睛随意拿出2只,它们恰好是一双的概率是______ .
    三、解答题(本大题共9小题,共72.0分。解答应写出文字说明,证明过程或演算步骤)
    17.(本小题8.0分)
    如图所示,在菱形ABCD中,∠ABC=60°,DE/​/AC交BC的延长线于点E.求证:DE=12BE.


    18.(本小题8.0分)
    如图,在四边形ABCD中,对角线AC与BD交于点O,且OA=OB=OC=OD= 22AB.

    (1)求证:四边形ABCD是正方形.
    (2)若H是边AB上一点(H与A,B不重合),连接DH,将线段DH绕点H顺时针旋转90∘,得到线段HE,过点E分别作BC及AB延长线的垂线,垂足分别为F,G.设四边形BGEF的面积为S1,以HB,BC为邻边的矩形的面积为S2,且S1=S2.当AB=2时,求AH的长.
    19.(本小题8.0分)
    某商场销售一批名牌衬衫,平均每天可售出20件,每件可盈利40元.为了扩大销售量,增加盈利,尽快减少库存,商场采取适当的降价措施.经调查发现,如果每件降价1元,商场平均每天可多售出2件.
    (1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?
    (2)该商场平均每天盈利能达到1500元吗?如果能,求出此时应降价多少;如果不能,请说明理由;
    (3)该商场平均每天盈利最多多少元?达到最大值时应降价多少元?
    20.(本小题8.0分)

    如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点D从点C开始沿CA边运动,速度为1cm/s,与此同时,点E从点B开始沿BC边运动,速度为2cm/s,当点E到达点C时,点D同时停止运动,连接AE,设运动时间为t s,△ADE的面积为S.
    (1)是否存在某一时刻t,使DE/​/AB?若存在,请求出此时刻t的值,若不存在,请说明理由.
    (2)点D运动至何处时,S=18S△ABC?

    21.(本小题8.0分)

    小南、小铭和两个陌生人甲、乙同在如图所示的地下车库等电梯,已知两个陌生人到1至4层的任意一层出电梯.
    (1)用列表或画树状图求出甲、乙二人在同一层楼出电梯的概率;
    (2)小南和小铭比赛,规则是:若甲、乙在同一层或相邻楼层出电梯,则小南胜,否则小铭胜.该游戏是否公平?若公平,说明理由;若不公平,请修改游戏规则,使游戏公平.

    22.(本小题8.0分)
    三张硬纸片上分别写有一个代数式,分别是A=4x2+5x+6,B=-3x2-x-2,C=x2+4x.
    (1)A-B+C的值为P.当x=2时,求P的值;
    (2)将三张纸片背面向上,打乱顺序后,在背面分别标上①、②、③,摆成如图所示的一个式子,请用树状图或列表法求出能使运算结果为常数的概率.

    23.(本小题8.0分)
    如图,已知Rt△ABC中,∠ACB=90°,∠B=15°,边AB的垂直平分线交边BC于点E,垂足为点D,取线段BE的中点F,连接DF.求证:AC=DF.(说明:此题的证明过程需要批注理由)

    24.(本小题8.0分)
    如图,在四边形ABCD中,BD为一条对角线,AD //BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.

    (1)求证:四边形BCDE为菱形;
    (2)连接AC,若AC平分∠BAD,BC=1,求AC的长.
    25.(本小题8.0分)

    如图,在△ABC中,∠B=90°,AB=BC=5cm,点Q从点A开始沿AB边向点B以1cm/s的速度移动点P从点B开始沿BC边向点C以2cm/s速度移动,两点同时出发,连接PQ.
    (1)经过多长时间后,△PBQ的面积等于4cm2?
    (2)△PBQ的面积能否等于7cm2?试说明理由.


    答案和解析

    1.【答案】C 
    【解析】【分析】
    此题考查三角形全等的判定和性质、正方形的性质和勾股定理。
    利用三角形全等的性质定理,细心证明三角形全等,然后得出全等三角形对应边相等;利用勾股定理求出RtΔBGE三边的关系。
    【解答】
    解:在ΔABE和ΔBCF中
    AB=BC∠ABE=∠BCFBE=FC
    ∴ΔABE≌ΔBCF(SAS)
    ∴AE=BF,∠BAE=∠CBF,
    ∵∠CBF+∠ABF=90°,
    ∴∠BAE+∠ABF=90°,
    ∵∠BAE+∠ABF+∠BGA=180°,
    ∴∠BGA=90°,
    ∴AE⊥BF,
    综上所述,故①②正确;
    设FD=x,
    ∴CF=2FD=2x,
    ∴AB=CD=3x,
    ∵BE=FC=2x,
    ∴在RtΔABE中,
    AE2=AB2+BE2=(3x)2+(2x)2=13x2,
    ∴AE= 13x,
    ∵S△ABE=12AB×BE=12AE×BG,
    ∴BG=6 1313x,
    又∵在Rt△BGE中,
    GE2+BG2=BE2,
    ∴GE2=BE2-BG2=(2x)2-(6 1313x)2=1613x2,
    ∴GE=4 1313x,
    ∴BG=32GE,故③错误;
    ∵ΔABE≌ΔBCF,
    ∴SΔABE=SΔBCF,
    ∴SΔABE-SΔBGE=SΔBCF-SΔBGE,
    ∴S四边形CEGF=SΔABG,故④正确.
    故选C.
    2.【答案】B 
    【解析】【分析】
    本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,直角三角形的性质等知识,熟练掌握勾股定理的应用是解题的关键.
    证明△BPG≌△BCG(ASA),得出PG=CG.设OG=PG=CG=x,则EG=2x,FG= 2x,由勾股定理得出BC2=(4+2 2)x2,则可得出答案.
    【解答】
    解:∵四边形EFGH为正方形,
    ∴∠EGH=45°,∠FGH=90°,
    ∵OG=GP,
    ∴∠GOP=∠OPG=67.5°,
    ∴∠PBG=22.5°,
    又∵∠DBC=45°,
    ∴∠GBC=22.5°,
    ∴∠PBG=∠GBC,
    在△BPG和△BCG中,
    ∵∠BGP=∠BGC=90°BG=BG∠PBG=∠CBG,
    ∴△BPG≌△BCG(ASA),
    ∴PG=CG.
    设OG=PG=CG=x,
    ∵O为EG,BD的交点,
    ∴∠EOD=∠GOB,
    又∵ED//BG,
    ∴∠EDO=∠GBO,
    ∵四个全等的直角三角形拼成“赵爽弦图”,
    ∴ED=BG,BF=CG,
    在△EOD和△GOB中,
    ∠EOD=∠GOB∠EDO=∠GBOED=GB,
    ∴△EOD≌△GOB(AAS),
    ∴EO=OG=x,
    ∴EG=2x,FG= 2x,
    ∴BF=CG=GP=OG=x,
    ∴BG=x+ 2x,
    ∴BC2=BG2+CG2=x2( 2+1)2+x2=(4+2 2)x2,
    ∴S正方形ABCDS正方形EFGH=(4+2 2)x22x2=2+ 2.
    故选:B.
    3.【答案】C 
    【解析】解:∵方程x2-2023x+1=0的两根分别为x1,x2,
    ∴x1+x2=2023,x12-2023x1+1=0,x22-2023x2+1=0,
    ∵x2≠0,
    ∴x2-2023+1x2=0,
    ∴-1x2=x2-2023,
    ∴-2023x2=2023x2-20232,
    ∴x12-2023x2=2023x1-1+2023x2-20232
    =2023(x1+x2)-1-20232
    =20232-1-20232
    =-1.
    由题意得出x1+x2=2023,x12-2023x1+1=0,x22-2023x2+1=0,将代数式变形后再代入求解即可.
    本题考查了根的定义及根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1x2=ca,熟练掌握代数式的求值技巧是解题的关键.也考查了一元二次方程的解.
    4.【答案】D 
    【解析】解:A.3x2+5x+1=0中,x=-5± 52-4×3×12×3,不合题意;
    B.3x2-5x+1=0中,x=5± 52-4×3×12×3,不合题意;
    C.3x2-5x-1=0中,x=5± 52+4×3×12×3,不合题意;
    D.3x2+5x-1=0中,x=-5± 52+4×3×12×3,符合题意;
    故选D.
    用公式法解一元二次方程的一般步骤为:①把方程化成一般形式,进而确定a,b,c的值;②求出b2-4ac的值(若b2-4ac<0,方程无实数根);③在b2-4ac≥0的前提下,把a、b、c的值代入公式进行计算求出方程的根.
    本题主要考查了公式法解一元二次方程,熟记求根公式是解题的关键.
    5.【答案】B 
    【解析】【分析】
    本题考查了一元二次方程根的判别式和分类讨论的思想方法.分k=0和k≠0两种情况讨论,得出k的取值范围.
    【解答】
    解:当k=0时,方程4x-1=0的解为x=14;
    当k≠0时,方程kx2+4x-1=0有实数根,
    ∴Δ=42-4k×-1≥0,
    ∴k≥-4,
    ∴k的取值范围是k≥-4.
    故选B.
    6.【答案】C 
    【解析】【分析】
    本题考查了概率公式的使用和可能性大小的判断,相互独立事件同时发生的概率,本题的数字运算比较麻烦,注意不要出错.根据概率公式,找准两点:符合条件的情况数目;全部情况的总数.二者的比值就是其发生的概率的大小.
    【解答】
    解:A、第1关,抛掷1次出现的点数最小为1,而抛出的所有点数之和大于34n2就行,故一定过关,故此选项错误;
    B、因为过第三关要求这3次抛掷所出现的点数之和大于34×32=274=634,
    因为第三关出现点数之和为3,4,5,6的次数分别为1,3,6,9,
    ∴P(小于7的概率)=19108,
    ∴P(大于7的概率)=1-19108=89108.故此选项错误;
    C、过第二关要求这2次抛掷所出现的点数之和大于34×22=3,
    由于2次抛掷所出现的点数之和为小于等于3的概率为336,
    所以过第二关的概率是1-336=1112;故此选项正确;
    D、过第六关要求这6次抛掷所出现的点数之和大于34×62=27,
    而抛6次出现的点数之和最小为6、最大为36,所以出现大于27是有可能的,故此选项错误.
    故选C.
    7.【答案】C 
    【解析】解:由题意可得:4m=0.4,
    解得:m=10.
    故可以推算出m约为10.
    故选:C.
    在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.
    本题主要考查了利用频率估计概率,解题的关键是掌握“利用大量试验得到的频率可以估计事件的概率.
    8.【答案】C 
    【解析】解:要研究两枚图钉针尖朝上的概率,只抛掷一枚与抛掷两枚结果是不同的,故A不符合题意;
    抛掷10次就得到结论,实验次数太少,不具有普遍性,故B不符合题意;
    向上抛掷2000次,多次计算针尖朝上的频率,再根据频率估计概率,由于实验次数较多,实验结果可以估计概率,故C符合题意;
    由于是通过实验估计概率,因此不能画出具体的树状图或表格,故D不符合题意;
    故选:C.
    大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
    本题考查利用频率估计概率,熟练掌握频率与概率的关系,用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.
    9.【答案】C 
    【解析】解:①若a+b+c=0,则x=1是方程ax2+bx+c=0的解,
    由一元二次方程的实数根与判别式的关系可知△=b2-4ac≥0,故①正确;
    ②∵方程ax2+c=0有两个不相等的实根,
    ∴△=0-4ac>0
    ∴-4ac>0
    则方程ax2+bx+c=0的判别式
    △=b2-4ac>0
    ∴方程ax2+bx+c=0必有两个不相等的实根,故②正确;
    ③∵c是方程ax2+bx+c=0的一个根,
    则ac2+bc+c=0
    ∴c(ac+b+1)=0
    若c=0,等式仍然成立
    但ac+b+1=0不一定成立,故③不正确;
    ④若x0是一元二次方程ax2+bx+c=0的根,
    则由求根公式可得:
    x0=-b+ b2-4ac2a或x0=-b- b2-4ac2a
    ∴2ax0+b= b2-4ac或2ax0+b=- b2-4ac
    ∴b2-4ac=(2ax0+b)2
    故④正确.
    故选:C.
    按照方程的解的含义、一元二次方程的实数根与判别式的关系、等式的性质、一元二次方程的求根公式等对各选项分别讨论,可得答案.
    本题主要考查了一元二次方程的实数根与判别式的关系,牢固掌握二者的关系并灵活运用,是解题的关键.
    10.【答案】A 
    【解析】解:∵四边形ABCD是正方形,
    ∴AC⊥BD,AO=12AC,BO=12BD,AC=BD,
    ∴AO=BO,∠OAN=∠OBM=45°,∠AOB=90°,
    ∵CN⊥DM,
    ∴∠MCN+∠CMD=∠CMD+∠CDM=90°,
    ∴∠CDM=∠BCN,
    ∵CD=BC,∠DCM=∠CBN,
    ∴△CDM≌△BCN(ASA),
    ∴CM=BN,
    ∴AN=BM,
    ∴△AON≌△BOM(SAS),
    ∴S△AON=S△BOM,
    ∴S四边形ONBM=S△AOB=14S正方形ABCD,
    ∴S四边形ABCD=4S四边形ONBM;故①正确;
    ∵△AON≌△BOM,
    ∴ON=OM,∠AON=∠BOM,
    ∴∠NOM=∠AOB=90°,
    ∴△NOM是等腰直角三角形,
    ∴MN2=2ON2,
    ∵BN2+BM2=MN2,
    ∴CM2+BM2=2ON2,故②正确;
    ∵∠MON=∠COD=90°,
    ∴∠NOC=∠MOD,
    ∵OD=OC,ON=OM,
    ∴△CON≌△DOM(SAS),故③正确;
    ∵AB=2,
    ∴S正方形ABCD=4,
    ∵△AON≌△BOM,
    ∴四边形BMON的面积=△AOB的面积=1,即四边形BMON的面积是定值1,
    ∴当△MNB的面积最大时,△MNO的面积最小,
    设BN=x=CM,则BM=2-x,
    ∴△MNB的面积=12x(2-x)=-12x2+x=-12(x-1)2+12,
    ∴当x=1时,△MNB的面积有最大值12,
    此时S△OMN的最小值是1-12=12,
    故④不正确,
    故选:A.
    根据正方形的性质,依次判定△CNB≌△DMC,△AON≌△BOM,根据全等三角形的性质以及勾股定理进行计算即可得出结论.
    本题主要考查了正方形的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题时注意偶次方的非负性求最值的运用.
    11.【答案】D 
    【解析】解:如图,过点M作MH⊥A'R于H,过点N作NJ⊥A'W于J.

    由题意△EMN是等腰直角三角形,EM=EN=2,MN=2 2,
    ∵四边形EMHK是矩形,
    ∴EK=A'K=MH=1,KH=EM=2,
    ∵△RMH是等腰直角三角形,
    ∴RH=MH=1,RM= 2,同法可证NW= 2,
    由题意AR=RA'=A'W=WD=4,
    ∴AD=AR+RM+MN+NW+DW=4+ 2+2 2+ 2+4=8+4 2,
    故选:D.
    如图,过点M作MH⊥A'R于H,过点N作NJ⊥A'W于J.想办法求出AR,RM,MN,NW,WD即可解决问题.
    本题考查翻折变换,等腰直角三角形的判定和性质,矩形的性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形或特殊四边形解决问题.
    12.【答案】A 
    【解析】解:①连接BE,交FG于点O,如图,

    ∵EF⊥AB,EG⊥BC,
    ∴∠EFB=∠EGB=90°.
    ∵∠ABC=90°,
    ∴四边形EFBG为矩形.
    ∴FG=BE,OB=OF=OE=OG.
    ∵四边形ABCD为正方形,
    ∴AB=AD,∠BAC=∠DAC=45°.
    在△ABE和△ADE中,
    AE=AE∠BAC=∠DACAB=AD,
    ∴△ABE≌△ADE(SAS).
    ∴BE=DE.
    ∴DE=FG.
    ∴①正确;
    ②延长DE,交FG于M,交FB于点H,
    ∵△ABE≌△ADE,
    ∴∠ABE=∠ADE.
    由①知:OB=OF,
    ∴∠OFB=∠ABE.
    ∴∠OFB=∠ADE.
    ∵∠BAD=90°,
    ∴∠ADE+∠AHD=90°.
    ∴∠OFB+∠AHD=90°.
    即:∠FMH=90°,
    ∴DE⊥FG.
    ∴②正确;
    ③由②知:∠OFB=∠ADE.
    即:∠BFG=∠ADE.
    ∴③正确;
    ④∵点E为AC上一动点,
    ∴根据垂线段最短,当DE⊥AC时,DE最小.
    ∵AD=CD=4,∠ADC=90°,
    ∴AC= AD2+CD2=4 2.
    ∴DE=12AC=2 2.
    由①知:FG=DE,
    ∴FG的最小值为2 2,
    ∴④错误.
    综上所述,正确的结论为:①②③.
    故选:A.
    ①连接BE,易知四边形EFBG为矩形,可得BE=FG;由△AEB≌△AED可得DE=BE,所以DE=FG;
    ②由矩形EFBG可得OF=OB,则∠OBF=∠OFB;由∠OBF=∠ADE,则∠OFB=∠ADE;由四边形ABCD为正方形可得∠BAD=90°,即∠AHD+∠ADH=90°,所以∠AHD+∠OFH=90°,即∠FMH=90°,可得DE⊥FG;
    ③由②中的结论可得∠BFG=∠ADE;
    ④由于点E为AC上一动点,当DE⊥AC时,根据垂线段最短可得此时DE最小,最小值为2 2,由①知FG=DE,所以FG的最小值为2 2.
    本题考查了正方形的性质,垂线段最短,全等三角形的判定与性质,矩形的判定与性质,根据图形位置的特点通过添加辅助线构造全等是解题的关键,也是解决此类问题常用的方法.
    13.【答案】(165,-125) 
    【解析】【分析】
    此题考查了翻折变化(折叠问题),坐标与图形变换,以及矩形的性质,熟练掌握折叠的性质是解本题的关键.由折叠的性质得到一对角相等,对应边相等,再由矩形对边相等且平行,得到一对内错角相等,等量代换及等角对等边得到BE=OE,AE=DE,过D作DF垂直OA,利用勾股定理及面积法求出DF与OF的长,即可确定出D坐标.
    【解答】
    解:由折叠得:∠CBO=∠DBO,0C=0D,BC=BD

    ∵矩形ABCO,
    ∴BC/​/OA,BC=OA=8,OC=AB=4,
    ∴∠CBO=∠BOA,OA=BD
    ∴∠DBO=∠BOA,
    ∴BE=OE,
    ∵OA=BD,
    ∴AE=DE,
    设DE=AE=x,则有OE=BE=8-x,
    在Rt△ODE中,根据勾股定理得:42+x2=(8-x)2
    解得:x=3,即OE=5,DE=3,
    过D作DF⊥OA,
    ∵S△OED=12OD⋅DE=12OE⋅DF,
    ∴DF=125,OF= 42-(125)2=165,
    则D(165,-125).
    故答案为(165,-125).
    14.【答案】-1. 
    【解析】【分析】
    这是一道考查一元二次方程根与系数的关系以及代数式求值的题目,解题关键在于得到m+n的值,整体代入即可求出答案.
    【解答】
    解:∵方程x2-2x-5=0的两个根是m和n,
    ∴m+n=-ba=2,n2-2n-5=0
    ∴n2-2n=5,
    ∴原式=2m+2n+2n-n2=2m+n-n2-2n=4-5=-1.
    故答案为-1.
    15.【答案】11 
    【解析】解:由根与系数的关系可知:
    α+β= 10,α⋅β=2,
    而2α2+β2+ 10β-3
    =2α2+β2+(α+β)β-3
    =2(α2+β2)+αβ-3
    =2(α+β)2-3αβ-3
    =2×10-3×2-3
    =11.
    故填空答案:11.
    由根与系数的关系可知:α+β= 10,α⋅β=2,而2α2+β2+ 10β-3=2α2+β2+(α+β)β-3=2(α2+β2)+αβ-3=2(α+β)2-3αβ-3,然后把前面的值代入即可求出其值.
    灵活运用根与系数的关系是解决本题的关键,特别是α+β= 10这个式子的转换.
    16.【答案】13 
    【解析】解:设两双红色拖鞋分别是a,A,a,A;1双蓝色拖鞋是c,C,
     
     a





     a
    /

    ×

    ×
    ×
     A

    /

    ×
    ×
    ×
     a
    ×

    /

    ×
    ×
     A

    ×

    /
    ×
    ×
     c
    ×
    ×
    ×
    ×
    /

     C
    ×
    ×
    ×
    ×

    /
    共有30种可能,它们恰好是一双的有10种,所以它们恰好是一双的概率是1030=13.
    用列表法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.
    列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
    17.【答案】证明:∵四边形ABCD是菱形,∠ABC=60°,
    ∴AD/​/BC,AC=AD,
    ∵AC/​/DE,
    ∴四边形ACED是菱形,
    ∴DE=CE=AC=BC,
    ∴DE=12BE.
     
    【解析】本题考查的是菱形的判定与性质有关知识,根据四边形ABCD是菱形得出∠ABC=60°,AD//BC,AC=AD证出四边形ACED是菱形即可解答.
    18.【答案】解:(1)证明:∵OA=OB=OC=OD,
    ∴四边形ABCD是平行四边形,
    ∴AC=BD.
    ∴平行四边形ABCD是矩形.
    ∵OA=OB=OC=OD= 22AB,
    ∴OA2+OB2=AB2.
    ∴∠AOB=90∘,
    即AC⊥BD.
    ∴四边形ABCD是正方形.
    (2)解:∵四边形ABCD是正方形,
    ∴∠DAB=∠ABC=∠CBG=90∘,AB=AD=BC=2.
    ∵EF⊥BC,EG⊥AG,
    ∴∠G=∠EFB=∠FBG=90∘.
    ∴四边形BGEF是矩形.
    ∵将线段DH绕点H顺时针旋转90∘得到线段HE,
    ∴∠DHE=90∘,DH=HE.
    又∵∠DAB=90∘,
    ∴∠ADH+∠AHD=∠AHD+∠EHG=90∘.
    ∴∠ADH=∠EHG.
    又∵∠DAH=∠G=90∘,DH=HE,
    ∴△ADH≌△GHE.
    ∴AD=HG,AH=EG.
    ∵AB=AD,
    ∴AB=HG.
    ∴AH=BG.
    ∴BG=EG.
    ∴四边形BGEF是正方形.设AH=x,则BG=EG=x.
    ∵S1=S2,
    ∴x2=2(2-x).
    变形,得x2+2x=4.
    方程两边加1,得x2+2x+1=4+1,
    即(x+1)2=5.
    开平方,得x+1=± 5,即x= 5-1
    或x=- 5-1(舍去).
    ∴AH= 5-1.
     
    【解析】见答案
    19.【答案】解:(1)设每件衬衫应降价x元,则每件盈利40-x元,每天可以售出20+2x,
    由题意,得(40-x)(20+2x)=1200,
    即:(x-10)(x-20)=0,
    解,得x1=10,x2=20,
    为了扩大销售量,增加盈利,尽快减少库存,所以x的值应为20,
    所以,若商场平均每天要盈利12O0元,每件衬衫应降价20元;

    (2)假设能达到,由题意,得(40-x)(20+2x)=1500,
    整理,得2x2-60x+700=0,
    △=602-2×4×700=3600-5600<0,
    即:该方程无解,
    所以,商场平均每天盈利不能达到1500元;

    (3)设商场平均每天盈利y元,每件衬衫应降价x元,
    由题意,得y=(40-x)(20+2x),
    =800+80x-20x-2x2,
    =-2(x2-30x+225)+450+800,
    =-2(x-15)2+1250,
    当x=15元时,该函数取得最大值为1250元,
    所以,商场平均每天盈利最多1250元,达到最大值时应降价15元. 
    【解析】(1)设每件衬衫应降价x元,则每件盈利40-x元,每天可以售出20+2x,所以此时商场平均每天要盈利(40-x)(20+2x)元,根据商场平均每天要盈利=1200元,为等量关系列出方程求解即可.
    (2)假设能达到,根据商场平均每天要盈利=1500元,为等量关系列出方程,看该方程是否有解,有解则说明能达到,否则不能.
    (3)设商场平均每天盈利y元,由(1)可知商场平均每天盈利y元与每件衬衫应降价x元之间的函数关系为:y=(40-x)(20+2x),用“配方法”求出该函数的最大值,并求出降价多少.
    本题主要考查一元二次方程的应用,关键在于理解清楚题意找出等量关系列出方程求解,另外还用到的知识点有“根的判别式”和用“配方法”求函数的最大值.
    20.【答案】解:(1)存在,理由如下:
    假设存在某一时刻t,使DE/​/AB,
    ∴CDCA=CECB,
    ∵AC=6,BC=8,CD=t,CE=8-2t,
    ∴t6=8-2t8,
    ∴t=125,符合题意(t最大为8÷2=4秒),
    ∴存在某一时刻t=125秒,使DE/​/AB;
    (2)设运动t秒时,S=18S△ABC,
    根据图示可知,S=S△ACE-S△DCE=18S△ABC,
    ∵S△ABC=12AC⋅CB=12×6×8=24平方厘米,
    S△ACE=12AC⋅CE=12×6×(8-2t)=(24-6t)平方厘米,
    S△DCE=12CD⋅CE=12t(8-2t)=(4t-t2)平方厘米,
    ∴S=(24-6t)-(4t-t2)=24-6t-4t+t2=(t2-10t+24)平方厘米,
    ∴S=18S△ABC,
    ∴t2-10t+24=18×24,
    解一元二次方程得:t1=7,t2=3,
    ∵点E到达点C时,点D同时停止运动,在整个运动过程中0≤t≤4,
    ∴t=3秒符合题意,
    ∴此时CD=3(cm),
    ∴CD=3cm时,S=18S△ABC. 
    【解析】(1)通过三角形内平行线分线段成比例,列式计算,再判断得到的t值是否符合题意,来判断即可;
    (2)设运动时间为t时,△ADE的面积为S=S△ACE-S△DCE=18S△ABC,计算t的值,再判断值是否符合题意.
    本题考查了一元二次方程的应用,动态几何问题,解题的关键是读懂题意,掌握运动的整个过程,利用一元二次方程解决问题.
    21.【答案】解:(1)列表如下:



    1
    2
    3
    4
    1
    (1,1)
    (2,1)
    (3,1)
    (4,1)
    2
    (1,2)
    (2,2)
    (3,2)
    (4,2)
    3
    (1,3)
    (2,3)
    (3,3)
    (4,3)
    4
    (1,4)
    (2,4)
    (3,4)
    (4,4)
    一共出现16种等可能结果,其中出现在同一层楼梯的有4种结果,
    则P(甲、乙在同一层楼梯)=416=14;

    (2)由(1)列知:甲、乙住在同层或相邻楼层的有10种结果
    故P(小南胜)=P(同层或相邻楼层)=1016=58,P(小铭胜)=1-58=38,
    ∵58>38,∴游戏不公平,
    修改规则:若甲、乙同住一层或相邻楼层,则小南得3分;否则,小铭得5分. 
    【解析】(1)列表得出所有等可能的情况数,找出甲乙在同一个楼层的情况数,即可求出所求的概率;
    (2)分别求出两人获胜的概率比较得到公平与否,修改规则即可.
    此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.
    22.【答案】解:(1)∵A=4x2+5x+6,B=-3x2-x-2,C=x2+4x,
    ∴P=A-B+C,=(4x2+5x+6)-(-3x2-x-2)+(x2+4x)=4x2+5x+6+3x2+x+2+x2+4x=8x2+10x+8,
    当x=2时,P=8×22+10×2+8=32+20+8=60;
    (2)由(1)得A-B+C=8x2+10x+8,结果不是常数,同理C-B+A=8x2+10x+8,结果不是常数;
    B-A+C=(-3x2-x-2)-(4x2+5x+6)+(x2+4x)
    =-3x2-x-2-4x2-5x-6+x2+4x
    =-6x2-2x-8,
    ∴B-A+C的结果不为常数,
    同理C-A+B,结果不为常数;
    A-C+B=(4x2+5x+6)-(x2+4x)+(-3x2-x-2)
    =4x2+5x+6-x2-4x-3x2-x-2=4,
    ∴A-C+B的结果为常数,
    同理可得B-C+A的结果为常数;
    画树状图如下:

    由树状图可知一共有6种等可能性的结果数,其中运算结果为常数的有2种,
    ∴运算结果为常数的概率26=13. 
    【解析】(1)先根据整式的加减计算法则求出P,再代值计算即可;
    (2)先根据整式的加减计算法则求出A-B+C,C-B+A,B-A+C,C-A+B的结果不为常数,A-C+B,B-C+A的结果为常数,再画出对应的树状图得到所有的等可能性的结果数,再找到符合题意的结果数,最后依据概率计算公式求解即可.
    本题主要考查了整式的化简求值,整式的加减计算,树状图或列表法求解概率,熟知整式的加减计算法则是解题的关键.
    23.【答案】证明:连接AE,
    ∵DE是AB的垂直平分线(已知),
    ∴AE=BE,∠EDB=90°(线段垂直平分线的性质),
    ∴∠EAB=∠EBA=15°(等边对等角),
    ∴∠AEC=30°(三角形的一个外角等于与它不相邻的两个内角的和),
    Rt△EDB中,∵F是BE的中点(已知),
    ∴DF=12BE(直角三角形斜边中线等于斜边的一半),
    Rt△ACE中,∵∠AEC=30°(已知),
    ∴AC=12AE(直角三角形30°角所对的直角边是斜边的一半),
    ∴AC=DF(等量代换). 
    【解析】先根据线段垂直平分线的性质得:AE=BE,再利用直角三角形斜边中线的性质得:DF与BE的关系,最后根据直角三角形30度的性质得AC和AE的关系,从而得出结论.
    本题考查了直角三角形含30度角的性质、直角三角形斜边中线及线段垂直平分线的性质,熟练掌握性质是关键,属于基础题.
    24.【答案】(1)证明:∵E为AD的中点,
    ∴AD=2ED.∵AD=2BC,∴ED=BC.
    ∵AD//BC,∴四边形BCDE为平行四边形.
    又∵在△ABD中,E为AD的中点,∠ABD=90∘,
    ∴BE=ED,∴▱BCDE为菱形.
    (2)解:设AC与BE交于点H,如图.
    ∵AD/​/BC,∴∠DAC=∠ACB.
    ∵AC平分∠BAD,∴∠BAC=∠DAC,
    ∵∠BAC=∠ACB,∴BA=BC,
    由(1)可知,BE=AE=BC,
    ∴AB=BE=AE,∴△ABE为等边三角形,
    ∴∠BAC=30∘,AC⊥BE,∴AH=CH.
    在Rt△ABH中,AH=AB⋅cos∠BAH= 32,
    ∴AC=2AH= 3.

     
    【解析】本题考查菱形的判定与性质,直角三角形斜边上的中线,30°直角三角形的性质.
    (1)由DE=BC,DE/​/BC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;
    (2)在Rt△ABH中,只要证明∠BAH=30°,AB=1即可解决问题.
    25.【答案】解(1)设x秒后,△PBQ的面积等于4cm2,
    此时,AQ=x cm,QB=(5-x)cm.BP=2xcm,
    由12QB⋅BP=4得12(5-x)⋅2x=4,
    整理,得x2-5x+4=0
    解得x1=l,x2=4(不合题意,舍去)
    所以1秒后,△PBQ的面积等于4cm2.

    (2)根据题意,得12(5-x)⋅2x=7,
    整理,得x2-5x+7=0,
    因为b2-4ac=25-28<0,
    所以此方程无解,即△PBQ的面积不能等于7cm2. 
    【解析】(1)分别表示出线段PB和线段BQ的长,然后根据面积为4列出方程求得时间即可;
    (2)参照(1)的解法列出方程,根据根的判别式来判断该方程的根的情况.
    此题主要考查了一元二次方程的应用,判断所求的解是否符合题意,舍去不合题意的解.找到关键描述语,找到等量关系准确地列出方程是解决问题的关键.
    相关试卷

    浙教版初中数学九年级上册期中测试卷(困难)(含答案解析): 这是一份浙教版初中数学九年级上册期中测试卷(困难)(含答案解析),共24页。试卷主要包含了二章等内容,欢迎下载使用。

    浙教版初中数学九年级上册期中测试卷(困难)(含答案解析): 这是一份浙教版初中数学九年级上册期中测试卷(困难)(含答案解析),共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湘教版初中数学九年级上册期中测试卷(困难)(含答案解析): 这是一份湘教版初中数学九年级上册期中测试卷(困难)(含答案解析),共35页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        北师大初中数学九年级上册期中测试卷(困难)(含答案解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map