高考数学秒杀题高考二轮专题系列——新版秒1电子档【word+PDF】
展开这是一份高考数学秒杀题高考二轮专题系列——新版秒1电子档【word+PDF】,文件包含4-2焦点三角形问题docx、4-2焦点三角形问题pdf、4-6设点设线进阶之角度问题docx、2-4万能的建系法求向量乘积问题pdf、2-4万能的建系法求向量乘积问题docx、4-6设点设线进阶之角度问题pdf、4-1焦长与焦比体系docx、4-1焦长与焦比体系pdf、5-5同构式下的函数体系docx、5-5同构式下的函数体系pdf、5-6分而治之docx、5-6分而治之pdf、1-5周期函数docx、4-5抛物线设点设线基础pdf、4-5抛物线设点设线基础docx、4-7定比点差法破解极点极线pdf、1-5周期函数pdf、4-7定比点差法破解极点极线docx、3-4三板斧之米勒定理pdf、1-4W函数之卡根法pdf、1-1三角函数图像与性质docx、1-1三角函数图像与性质pdf、3-4三板斧之米勒定理docx、1-4W函数之卡根法docx、4-4椭圆双曲线设点设线基础docx、5-1抽象函数的导函数构造docx、4-4椭圆双曲线设点设线基础pdf、5-7对数平均不等式的应用docx、5-7对数平均不等式的应用pdf、3-5新三板斧之角平分线相关定理docx、2-3等高线定理的运用pdf、2-3等高线定理的运用docx、3-5新三板斧之角平分线相关定理pdf、5-1抽象函数的导函数构造pdf、1-2两角和与差的正弦余弦和正切pdf、5-4利用零点比大小秒杀参数取值范围docx、1-2两角和与差的正弦余弦和正切docx、1-6三角恒等变形求值docx、2-5奔驰定理与向量四心pdf、1-6三角恒等变形求值pdf、2-5奔驰定理与向量四心docx、3-7新三板斧之托勒密定理docx、3-7新三板斧之托勒密定理pdf、5-3对数单身狗指数找基友pdf、5-4利用零点比大小秒杀参数取值范围pdf、3-3三板斧之万能辅助角公式pdf、5-8数形结合秒杀公切线pdf、3-3三板斧之万能辅助角公式docx、5-3对数单身狗指数找基友docx、5-8数形结合秒杀公切线docx、4-3最值之声东击西docx、1-3正切恒等式pdf、3-6新三板斧之斯特瓦尔特定理到极化恒等式docx、1-3正切恒等式docx、5-2构造lnx比大小比docx、5-2构造lnx比大小比pdf、2-1向量的基础知识docx、4-3最值之声东击西pdf、3-1三板斧之射影定理docx、2-8对角线向量定理docx、2-1向量的基础知识pdf、2-6极化恒等式docx、2-8对角线向量定理pdf、2-6极化恒等式pdf、2-7极化恒等式之矩形大法pdf、2-2共线之对面的女孩看过来docx、3-6新三板斧之斯特瓦尔特定理到极化恒等式pdf、2-2共线之对面的女孩看过来pdf、2-7极化恒等式之矩形大法docx、3-2三板斧之灵动面积周长公式pdf、3-1三板斧之射影定理pdf、3-2三板斧之灵动面积周长公式docx等72份试卷配套教学资源,其中试卷共517页, 欢迎下载使用。
表二:余弦函数与的图像性质关系
根据上一讲的内容,这一讲主要针对一些动态的三角函数涉及的取值范围题型,进行卡根法来破解.
秒杀秘籍:第一讲 ω为定值卡根
此类型题就是根据题意,给定的区间宽度与函数周期的关系建立即可.
定理:任意对称轴(对称中心)之间的间距为;最大值与最小值的水平间距为.
任意对称轴与对称中心之间的间距为;以上情况当时取得最小值.
【例1】(2019•新课标 = 2 \* ROMAN \* MERGEFORMAT II)若,是函数两个相邻的极值点,则( )
A.2B.C.1D.
【例2】(2017•天津)设函数,,其中,.若,,且的最小正周期大于,则( )
A.,B.,
C.,D.,
注意:表一中要求对卡住根,再转换为的根为,两者之间通过来转换.
【例3】(2015•天津)已知函数,,若函数在区间内单调递增,且函数的图象关于直线对称,则的值为 .
例4.(2023•建平县期末•多选)已知函数,直线是的图象的相邻两条对称轴,则下列说法正确的是
A.函数为偶函数 B.的图象的一个对称中心为
C.在区间上有2个零点D.在区间上为单调函数
秒杀秘籍:第二讲 限定周期的ω卡根
通常在固定的一两个周期内,给予单调性的限定或者值域的限定,对或者会有一个区间限定,此类型题就是要卡住两个临界点,通常可以找出的范围,再推导至当中.
常见的卡根数学语言转化如下:
= 1 \* GB3 \* MERGEFORMAT ①在区间内单调且,(图1)
同理,在区间内单调且,
图1 图2
= 2 \* GB3 \* MERGEFORMAT ②在区间内没有零点且,(图2);
同理,在区间内没有零点且,
关于在给定范围内单调或者没有零点的问题,卡根的范围都在半个周期,区间内单调的开区间和闭区间没有区别,没有零点问题的开区间和闭区间的区别在于是否加上等号,很多考题就喜欢在这个细节上体现学生的基本功.所以,我们给出了模型分解,那么请大家思考,如果区间是或者是呢?如果题目所说在区间内是单调递增或者单调递减呢?请读者自己分析模型,或者通过刷此类型的题目不断累积经验.
另外,区间内单调或者无零点叫做内卡根,即卡在区间内部.
= 3 \* GB3 \* MERGEFORMAT ③在区间内有个零点
且(图3图4)
图3 图4
同理在区间内有个零点
且(图5图6)
图5 图6
关于在给定范围内出现零点个数的问题,卡根的范围都在一个周期,即左端点卡半个,右端点卡半个的情形,而开区间和闭区间的区别也仅仅是加上等号而已.开区间是外取等,闭区间则是内取等.请大家思考关于在区间的零点问题是如何解决的呢?我们会在后面的例题进行阐述.
【例5】(2019•新课标Ⅲ)设函数,已知在,有且仅有5个零点.下述四个结论:①在有且仅有3个极大值点;②在有且仅有2个极小值点;③在单调递增;④的取值范围是,.其中所有正确结论的编号是( )
A.①④B.②③C.①②③D.①③④
注意:在一些题目中,由于端点且的时候只需考虑端点,原因就是恒成立
【例6】(2023•葫芦岛月考)已知函数,若在区间,内没有零点,则的取值范围是( )
A.B.
C.D.
【例7】(2023•江西模拟)函数在上的值域为,则的取值范围是( )
A. B., C. D.
【例8】(2022•深圳模拟)已知函数在区间上恰有一个最大值点和最小值点,则实数的取值范围为( )
A.B.C.D.
例9.(2022•保山期末•多选)已知函数,则下列命题正确的是
A.若在,上有10个零点,则,
B.若在,上有11条对称轴,则,
C.若在,上有12个解,则,
D.若在,上单调递减,则,
例10.(2022上饶三模)已知函数在区间上恰有个最大值点,则的取值范围是( )
A.B.C.D.
秒杀秘籍:第三讲 已知一条对称轴和一个对称中心的ω卡根
由于对称轴和对称中心的水平距离为,设计,构造出函数的形式,再根据单调区间或者最值区间所处的范围进行卡根.
【例11】(2016•新课标Ⅰ)已知函数,,为的零点,为图象的对称轴,且在,上单调,则的最大值为( )
A.11 B.9 C.7 D.5
【例12】(2023•洛阳月考)已知函数,,,是函数的一个零点,且是其图象的一条对称轴.若是的一个单调区间,则的最大值为( )
A.18 B.17 C.15 D.13
达标训练
1.(2023•丹东月考)已知函数,若是图象的一条对称轴,是图象的一个对称中心,则( )
A. B. C. D.
2.(2023•珠海模拟)函数在区间,上的最大值为,则下列的取值不可能为( )
A.0 B. C. D.
3.(2023•茂名月考)已知函数,的最小正周期为,且是,上的单调函数,则的取值范围是( )
A., B., C., D.,
4.(2023•长春模拟)定义在,上的函数有零点,且值域,,则的取值范围是( )
A., B., C., D.,
5.(2023•定远期末)已知函数的定义域为,,值域为,,则的值可能是( )
A. B. C. D.
6.(2023•吉林期末)已知函数,若函数在,上有3个零点,则的取值范围为( )
A., B., C., D.,
7.(2023•宿州期末)已知,函数在区间,上恰有9个零点,那么的取值范围为( )
A., B., C. D.,
8.(2023•东湖期中)若函数在区间内没有最值,则的取值范围是( )
A.,, B.,,
C., D.,
9.(2023•如皋月考)已知函数,有三个不同的零点,,,且,则的值为( )
A. B. C. D.不能确定
10.(2023•佛山月考)已知函数的图象在区间上不单调,则的取值范围为( )
A., B.,,
C.,, D.,
11.(2023•河东模拟)已知函数的图象如图,当时,的图象与直线的三个交点的横坐标分别为,,,其中,那么的值为( )
A. B. C. D.
12.(2023•安庆模拟)已知函数,,的最大值为2,相邻对称轴间的距离为,且,且当时,的值域为,则的取值范围为( )
A. B. C. D.
13.(2023•广州月考)已知函数在区间,上单调递增,则的取值范围为( )
A., B., C., D.,
14.(2023•天津月考)已知函数,若在区间上单调递增,则的取值范围是( )
A. B.
C. D.
15.(2023•太原月考)已知函数,若的图象的任意一条对称轴与轴的交点的横坐标都不属于区间,则的取值范围是( )
A. B.
C. D.
16.(2023•株洲模拟)已知函数,其图象与直线相邻两个交点的距离为,若对恒成立,则的取值范围是( )
A. B. C. D.
17.(2023•浙江模拟)已知函数,,为的零点,为图象的对称轴,且在,单调,则的最大值为( )
A.12 B.11 C.10 D.9
18.(2023•湖北模拟)已知函数且,若在区间上有最大值,无最小值,则的最大值为( )
A. B. C. D.
19.(2023•芜湖模拟)已知函数,其中,,为的零点:且恒成立,在区间上有最小值无最大值,则的最大值是( )
A.11 B.13 C.15 D.17
20.(2023•小店期中)已知函数,的图象关于对称,是函数的一个对称中心,且在上单调,则的最大值为( )
A.9 B.7 C.5 D.3
21.(2023•日照期中)已知函数,,,对恒有,且在区间上有且只有一个使,则的最大值为( )
A. B. C. D.
22.(2023•衡水金卷联考)已知函数,,,两个等式:
,对任意的实数均恒成立,且在上单调,则的最大值为( )
A.1 B.2 C.3 D.4
23.(2023•湛江模拟)已知函数在,上恰有一个最大值点和两个零点,则的取值范围是 .
24.(2023•承德期末)已知函数,满足函数是奇函数,且当取最小值时,函数在区间和上均单调递增,则实数的取值范围为 .
25.(2023•定远一模)已知函数,若在区间内没有极值点,则的取值范围是 .
周期
最大值
1,当取得
A,当取得
最小值
-1,当取得
-A,当取得
单调增区间
单调减区间
对称轴
对称中心
周期
最大值
1,当取得
A,当取得
最小值
-1,当取得
-A,当取得
单调增区间
单调减区间
对称轴
对称中心
相关试卷
这是一份2024年高考数学二轮专题复习 四类立体几何题型-新高考数学大题秒杀技巧(原卷版+解析版),共21页。
这是一份高考数学秒杀题高考二轮专题系列——新版秒3电子档【word+PDF】,文件包含1-6函数建模与应用题docx、1-6函数建模与应用题pdf、2-6圆锥曲线解题方法论pdf、2-6圆锥曲线解题方法论docx、1-5嵌套函数与零点个数问题docx、1-5嵌套函数与零点个数问题pdf、3-6导数解题方法论docx、3-6导数解题方法论pdf、4-5解析几何结论纯图版pdf、4-5解析几何结论纯图版docx、4-6导数结论纯图版pdf、4-6导数结论纯图版docx、4-2三角向量结论纯图版docx、4-2三角向量结论纯图版pdf、4-4数列结论纯图版docx、4-4数列结论纯图版pdf、2-4斜率坐标同构双用法docx、2-4斜率坐标同构双用法pdf、1-2函数的基本性质pdf、1-2函数的基本性质docx、1-1指数函数与对数函数docx、1-1指数函数与对数函数pdf、2-5参数同构与复数变换docx、1-4周期函数与类周期函数docx、2-1抛物线两点式与同构方程docx、4-1函数不等式结论纯图版pdf、4-1函数不等式结论纯图版docx、1-3函数最值与分段函数docx、4-3立体几何结论纯图版pdf、2-2椭圆双曲线两点式与同构方程docx、2-3斜率同构下的圆锥曲线docx、4-3立体几何结论纯图版docx、2-3斜率同构下的圆锥曲线pdf、2-2椭圆双曲线两点式与同构方程pdf、2-1抛物线两点式与同构方程pdf、1-3函数最值与分段函数pdf、2-5参数同构与复数变换pdf、1-4周期函数与类周期函数pdf、3-1导数放缩与数列构造docx、3-1导数放缩与数列构造pdf、3-2切线夹与双变量构造pdf、3-2切线夹与双变量构造docx、3-3极值点不等式构造docx、3-5帕德逼近与极值点偏移构造docx、3-3极值点不等式构造pdf、3-4二次函数与极值点偏移构造pdf、3-5帕德逼近与极值点偏移构造pdf、3-4二次函数与极值点偏移构造docx等48份试卷配套教学资源,其中试卷共529页, 欢迎下载使用。
这是一份MST高考数学一轮复习数学大招秒杀1,共368页。