|试卷下载
终身会员
搜索
    上传资料 赚现金
    2023-2024学年安徽省六安市霍邱县九年级(上)月考数学试卷(9月份)(含解析)
    立即下载
    加入资料篮
    2023-2024学年安徽省六安市霍邱县九年级(上)月考数学试卷(9月份)(含解析)01
    2023-2024学年安徽省六安市霍邱县九年级(上)月考数学试卷(9月份)(含解析)02
    2023-2024学年安徽省六安市霍邱县九年级(上)月考数学试卷(9月份)(含解析)03
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023-2024学年安徽省六安市霍邱县九年级(上)月考数学试卷(9月份)(含解析)

    展开
    这是一份2023-2024学年安徽省六安市霍邱县九年级(上)月考数学试卷(9月份)(含解析),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年安徽省六安市霍邱县九年级(上)月考数学试卷(9月份)

    一、选择题(本大题共10小题,共40.0分。在每小题列出的选项中,选出符合题目的一项)

    1.下列函数中,属于关于的二次函数的是(    )

    A.  B.
    C.  D.

    2.下列各点中,一定在反比例函数的图象上的点是(    )

    A.  B.  C.  D.

    3.抛物线的顶点坐标是(    )

    A.  B.  C.  D.

    4.若点在二次函数的图象上,则的值为(    )

    A.  B.  C.  D.

    5.已知都在双曲线上,则的大小关系是(    )

    A.  B.  C.  D.

    6.若抛物线是常数的顶点在轴上,则的值为(    )

    A.  B.  C.  D.

    7.已知二次函数,下列说法正确的是(    )

    A. 该函数图象开口向上
    B. 若点都在该函数图象上,则
    C. 该函数图象与轴一定有交点
    D. 时,的增大而减小

    8.反比例函数是常数,且与二次函数在同一坐标系内的大致图象是(    )

    A.  B.
    C.  D.

    9.在一次足球比赛中,某队守门员开出的球门球,经过第一次飞行后的落地点为,第二次从落地点反弹后继续向前飞行,落地点为,如图,已知第一次飞行经过时球距离地面的高度适用公式,足球第二次飞行路线满足抛物线,且第二次飞行的最大高度和从反弹到落地所用时间均为第一次的一半,则足球第二次飞行所满足的函数表达式为(    )


    A.  B.
    C.  D.

    10.如图,抛物线为常数,且关于直线对称,与轴的其中一个交点坐标为下列结论中:关于的一元二次方程的解是其中不正确的个数是(    )

    A.
    B.
    C.
    D.

    二、填空题(本大题共4小题,共20.0分)

    11.二次函数的二次项系数是______

    12.若抛物线与直线交于两点,则点与点之间的距离 ______

    13.如图,在中,的顶点在轴的正半轴上,点,点在第一象限,且直角边平行于轴,反比例函数的图象经过点和边的中点,则的值为______


     

    14.已知二次函数其中是常数,且
    若该函数的图象经过点,则的值为______
    且当时对应的函数值均为正数,则的取值范围为______

    三、解答题(本大题共9小题,共90.0分。解答应写出文字说明,证明过程或演算步骤)

    15.本小题
    已知关于的二次函数,求的值.

    16.本小题
    已知二次函数是常数,且的图象的对称轴为直线,最大值为,且经过点,求的值.

    17.本小题

    如图,一辆宽为米的货车要通过跨度为米,拱高为米的单行抛物线隧道从正中通过,抛物线满足表达式保证安全,车顶离隧道的顶部至少要有米的距离,求货车的限高应是多少.


    18.本小题
    根据物理学知识,一定的压力作用于物体上产生的压强与物体受力面积成反比例,已知当时,
    试确定之间的函数表达式;
    如果作用于物体上的压力能产生的压强要大于时,求物体受力面积的取值范围.

    19.本小题

    已知二次函数与一次函数
    在给出的平面直角坐标系中画出这两个函数的图象.
    结合图象:
    直接写出这两个函数图象的交点坐标;
    直接写出对应的自变量的取值范围.


    20.本小题
    已知二次函数是常数
    求证:无论取何值,该函数的图象与轴一定有两个交点;
    取一个你喜欢的的值,并求出此时函数图象与轴的交点坐标.

    21.本小题

    如图,在平面直角坐标系中,一次函数与反比例函数其中的图象相交于两点.
    求一次函数与反比例函数的表达式;
    过点轴,交轴于点,过点轴于点,连接,求四边形的面积.


    22.本小题
    如图,在平面直角坐标系中,二次函数的图象与轴交于两点,与轴交于点,点在原点的左侧,点的坐标为
    求二次函数的表达式;
    若点是抛物线上一个动点,且在直线的上方连接,并把沿翻折,得到四边形,是否存在点,使四边形为菱形?若存在,请求出此时点的坐标;若不存在,请说明理由.


    23.本小题
    某商店经销一种书包,已知这种书包的成本价为每个市场调查发现,这种书包每天的销售量单位:个与销售单价单位:元有如下关系:设这种书包每天的销售利润为元.
    之间的函数表达式;
    这种书包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
    如果物价部门规定这种书包的销售单价不高于元;该商店销售这种书包每天要获得元的销售利润,销售单价应定为多少元?

    答案和解析

     

    1.【答案】 

    【解析】解:,是关于的二次函数,故A不符合题意;
    B,不是关于的二次函数,故B不符合题意;
    C,不是关于的二次函数,故C不符合题意;
    D,是关于的二次函数,故D符合题意;
    故选:
    根据二次函数定义,即可判断.
    本题考查了二次函数的定义,形如函数  是二次函数,注意二次项的系数不能为零,等号两边都是整式.

    2.【答案】 

    【解析】解:反比例函数为
    A.,故A不符合题意;
    B.,故B符合题意;
    C.,故C不符合题意;
    D.,故D不符合题意.
    故选:
    由于点在反比例函数图象上,那么点的坐标满足函数的解析式,由此即可确定选择项.
    此题主要考查了反比例函数图象上点的坐标特点,解题的关键是利用反比例函数的图象的点坐标特点解决问题.

    3.【答案】 

    【解析】解:由可知抛物线的顶点是
    故选C
    根据抛物线的顶点式求得顶点坐标即可判断.
    本题考查了二次函数的性质,根据顶点式求得顶点坐标是解题的关键.

    4.【答案】 

    【解析】解:根据题意,得
    ,即
    解得,
    故选:
    将点代入二次函数的解析式列出关于的一元一次方程,然后通过解一元一次方程求得的值即可.
    本题考查了二次函数图象上点的坐标特征.只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式的点就一定在函数的图象上.

    5.【答案】 

    【解析】解:双曲线
    双曲线在二、四象限,在每一象限内的增大而增大,

    在第二象限,在第四象限,


    故选:
    先根据函数图象得出此函数在每一象限内的增减性,再由各点横坐标的值即可得出结论.
    本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数的性质是解答此题的关键.

    6.【答案】 

    【解析】解:抛物线是常数的顶点在轴上,

    解得
    故选:
    抛物线的顶点在轴上时,抛物线与轴的交点只有一个,因此根的判别式,可据此求出的值.
    本题考查了二次函数的性质,解题的关键是了解当顶点在轴上时,抛物线与轴有唯一的公共点.

    7.【答案】 

    【解析】解:由题意,
    该二次函数的图象的开口方向向下;对称轴为,当时,的增大而增大,当时,的增大而减小;令,对应方程无解,故与轴没有交点.
    又当时,;担当时,

    综上,均错误,D正确.
    故选D
    依据题意,,进而由二次函数的图象与性质可以判断得解.
    本题考查了二次函数图象与性质,解题时要熟练掌握并灵活运用是关键.

    8.【答案】 

    【解析】解:选项A中,反比例函数中的,二次函数中的,而顶点坐标为应该在轴的正半轴,故该选项错误,不符合题意;
    选项B中,反比例函数中的,二次函数中的,故该选项错误,不符合题意;
    选项C中,反比例函数中的,二次函数中的,顶点坐标为应该在轴的正半轴,故该选项正确,符合题意;
    选项D中,反比例函数中的,二次函数中的,而顶点坐标为应该在轴的正半轴,故该选项错误,不符合题意;
    故选:
    根据反比例函数的性质和二次函数的性质,可以分别判断出它们的的正负情况和二次函数顶点所在的位置,然后即可判断哪个选项符合题意.
    本题考查反比例函数的图象、二次函数的图象,解答本题的关键是明确题意,利用反比例函数的性质和二次函数的性质解答.

    9.【答案】 

    【解析】解:当时,
    解得:
    的坐标为

    的坐标为

    第一次飞行的最高点为
    第二次飞行的最大高度为第一次的一半,
    第二次飞行的最高点为,即
    设足球第二次飞行所满足的函数表达式为
    代入得:
    解得:
    足球第二次飞行所满足的函数表达式为,即
    故选:
    利用二次函数图象上点的坐标特征,可求出点的坐标,结合,可求出点的坐标,利用配方法,将变形为顶点式,进而可得出第一次飞行的最高点为,结合第二次飞行的最大高度为第一次的一半,可得出第二次飞行的最高点顶点,设足球第二次飞行所满足的函数表达式为,由点的坐标,利用待定系数法可求出的值,此题得解.
    本题考查了二次函数图象上点的坐标特征、待定系数法求二次函数解析式以及二次函数的三种表达形式,根据第二次飞行的最大高度和从反弹到落地所用时间均为第一次的一半,找出点的坐标及第二次飞行的最高点是解题的关键.

    10.【答案】 

    【解析】解:抛物线开口方向向下,

    抛物线的对称轴在轴的右侧,
    异号,

    抛物线与轴的交点在正半轴,


    正确;
    抛物线的对称轴为直线
    关于直线的对称点的坐标为
    关于的一元二次方程的解是
    正确;
    抛物线的对称轴为直线

    时,,即


    正确;
    时,函数有最大值

    不正确;
    故选:
    根据抛物线开口方向,对称轴,与轴的交点坐标即可判断的值,即可判断;根据抛物线的对称性求得抛物线的另一个交点,利用函数与方程的故选即可判断时,即可判断;根据抛物线的对称轴可得,再根据当时,,进行计算即可判断;根据二次函数的最值即可判断
    本题考查了二次函数图象与系数的关系,根与系数的关系,抛物线与轴的交点,熟练掌握二次函数图象与系数的关系是解题的关键.

    11.【答案】 

    【解析】解:变形为
    二次项系数为
    故答案为:
    化成二次函数的一般形式,即可得出二次项系数.
    本题考查的是二次函数的一般形式,通过去括号,移项,合并同类项,得到二次函数的一般形式,确定二次项系数,一次项系数,常数项的值.

    12.【答案】 

    【解析】解:令
    解得
    的坐标分别为

    故答案为:
    通过解方程得点的坐标,然后计算点与点之间的距离即可.
    本题考查了二次函数图象上点的坐标特征,熟知二次函数的性质,函数与方程的故选是解题的关键.

    13.【答案】 

    【解析】解:在中,


    由题意可知,则
    的中点,

    反比例函数的图象经过点
    ,解得
    故答案为:
    利用勾股定理求得,由题意可知,则,进一步求得,代入即可求得的值.
    本题考查了反比例函数图象上点的坐标特征,勾股定理的应用,正确表示出点的坐标是解题的关键.

    14.【答案】   

    【解析】解:函数的图象经过点

    解得
    故答案为:
    时,
    二次函数与轴的交点坐标为
    又二次函数的对称轴是:直线

    抛物线开口向下,
    时对应的函数值均为正数,
    时,
    解得

    故答案为:
    代入,即可求得的值;
    可知抛物线开口向下上,求得对称轴为直线,代入,求得,代入得到,由题意可知,解得,即可求得
    本题考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,解题的关键:代入根据二次函数的性质得

    15.【答案】解:由题意得,
    解得


    的值为 

    【解析】根据二次函数的定义列式计算,得到答案.
    本题考查二次函数的定义,熟练掌握二次函数的定义是关键.

    16.【答案】解:二次函数是常数,且的图象的对称轴为直线,最大值为
    顶点为
    可设函数表达式为
    函数图象经过点
    ,解得

     

    【解析】利用待定系数法即可求得的值.
    本题考查了二次函数图象上点的坐标特征,二次函数的性质,熟练掌握待定系数法是解题的关键.

    17.【答案】解:当时,

    答:货车的限高应是米. 

    【解析】根据货车的宽度可求出当的值,用其减去即可求出结论.
    本题考查了二次函数的应用,代入求出值是解题的关键.

    18.【答案】解:一定的压力作用于物体上产生的压强与物体受力面积成反比例,
    可设
    时,


    之间的函数表达式为
    产生的压强要大于




    即如果作用于物体上的压力能产生的压强要大于时,求物体受力面积的取值范围是 

    【解析】根据反比例函数的定义可设,把时,代入,即可求解;
    压强大于,即时,求相对应的自变量的范围.
    此题主要考查反比例函数在实际生活中的应用,解题的关键是从实际问题中整理出函数模型,用反比例函数的知识解决实际问题.

    19.【答案】解:列表:

     

     

     

     

     

    描点、连线,可得到这两个函数的图象,如图:
    两个函数图象的交点坐标为

    二次函数图象在一次函数上方的部分对应的自变量即为所求.
    对应的自变量的取值范围是 

    【解析】依据题意,在坐标系中画出图象即可得解;
    依据题意,可以判断得解;
    依据题意,由二次函数图象在一次函数上方的部分对应的自变量即为所求.
    本题主要考查二次函数的图象与性质,解题时要熟练掌握并理解函数的图象的意义是关键.

    20.【答案】证明:
    关于的一元二次方程有两个不相等的实数根.
    无论取何值,该函数的图象与轴一定有两个交点.
    解:由题意,若

    时,


    此时函数图象与轴的交点坐标为 

    【解析】依据题意,求出,然后由根的判别式的大小进行判断可以得解;
    本题答案不唯一.举例后令,然后计算可以得解.
    本题主要考查了二次函数的图象与性质,解题时要熟练掌握并理解是关键.

    21.【答案】解:将点代入反比例函数,得
    反比例函数的表达式为:
    将点代入,得
    点的坐标为
    将点代入一次函数
    得:,解得:
    一次函数的表达式为:
    设一次函数轴交于点,如图:
     
    轴,
    ,点的坐标为
    轴,
    四边形为平行四边形,


    对于,当时,
    的坐标为


    的坐标为

    轴,


     

    【解析】将点代入反比例函数之中求出的值可得反比例函数表达式;再将点代入所求反比例函数的表达式求出的值得点的坐标,将点坐标代入一次函数之中求出的值可得一次函数表达式;
    设一次函数轴交于点,先证四边形为平行四边形得,进而可求出 ,再求出点的坐标为,进而可得点,然后根据点的坐标可得轴,,据此可求出,最后根据 可得出答案.
    此题主要考查了一次函数与反比例函数的交点,熟练掌握待定系数法求函数的表达式是解答此题的关键.

    22.【答案】解:代入

    解得
    二次函数的解析式为
    答:二次函数的解析式为
    存在点,使四边形为菱形.理由如下:
    ,连接;交于点

    若四边形是菱形,则
    连接,则

    解得不合题意,舍去
     

    【解析】利用待定系数法即可求解.
    设出点的坐标,求出的坐标,利用菱形的性质即可求解.
    本题主要考查二次函数的综合应用,解答本题的关键是要会用待定系数法求抛物线的解析式,还要牢记菱形的性质:菱形的对角线互相垂直,菱形的四条边都相等.

    23.【答案】解:
    之间的函数表达式
    根据题意得:

    时,有最大值,最大值是元,
    答:这种书包销售单价定为元时,每天的销售利润最大,最大利润是元;
    时,
    解得

    不符合题意,舍去,
    答:该商店销售这种书包每天要获得元的销售利润,销售单价应定为元. 

    【解析】每天的销售利润每天的销售量每件产品的利润;
    根据配方法,可得答案;
    根据自变量与函数值的对应关系,可得答案.
    本题考查了二次函数的应用;得到每天的销售利润的关系式是解决本题的关键;利用配方法或公式法求得二次函数的最值问题是常用的解题方法.

    相关试卷

    2023-2024学年安徽省六安市霍邱县八年级(上)期末数学试卷(含解析): 这是一份2023-2024学年安徽省六安市霍邱县八年级(上)期末数学试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年安徽省六安市霍邱县八年级(上)期中数学试卷(含解析): 这是一份2023-2024学年安徽省六安市霍邱县八年级(上)期中数学试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年安徽省六安市霍邱县九年级(上)期末数学试卷(含解析): 这是一份2022-2023学年安徽省六安市霍邱县九年级(上)期末数学试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map