初一数学上册:常考要点技巧整理
展开
1、有理数正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;2、数轴:数轴是规定了原点、正方向、单位长度的一条直线.3、相反数只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
4、绝对值(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|
5、有理数比大小(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.
有理数法则及运算规律(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.2、有理数加法的运算律(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).3、有理数减法法则减去一个数,等于加上这个数的相反数;即a-b=a+(-b).4、有理数乘法法则(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.5、有理数乘法的运算律(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.6、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数。7、有理数乘方的法则:正数的任何次幂都是正数;
乘方的定义1、求相同因式积的运算,叫做乘方;2、乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;3、近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.4、有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.5、混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.6、特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.
代数初步知识1、代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)2、列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.
几个重要的代数式(m、n表示整数)1、a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;2、若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;3、若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;4、若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.
整式的加减1、单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2、单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3、多项式:几个单项式的和叫多项式.4、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)5、整式:单项式和多项式统称为整式
整式同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.合并同类项法则:系数相加字母与字母指数不变.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.5、多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.
一元一次方程等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!2、等式的性质等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3、方程:含未知数的等式,叫方程.4、方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5、移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).8、一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).9、一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).
列一元一次方程解应用题1、读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字2、画图分析法:…多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现。