所属成套资源:备战2024新高考高中数学二轮重难点+热点专题
备战2024新高考-高中数学二轮重难点专题40-概率与统计的综合应用
展开
这是一份备战2024新高考-高中数学二轮重难点专题40-概率与统计的综合应用,文件包含2024新高考二轮重难点专题40概率与统计的综合应用原卷版docx、2024新高考二轮重难点专题40概率与统计的综合应用解析版docx等2份教案配套教学资源,其中教案共48页, 欢迎下载使用。
2024高考数学二轮复习
重难点专题40
概率与统计的综合应用
【题型归纳目录】
题型一:决策问题
题型二:道路通行问题
题型三:保险问题
题型四:概率最值问题
题型五:放回与不放回问题
题型六:体育比赛问题
题型七:几何问题
题型八:彩票问题
题型九:纳税问题
题型十:疾病问题
题型十一:建议问题
题型十二:概率与数列递推问题
题型十三:硬币问题
题型十四:自主选科问题
题型十五:高尔顿板问题
题型十六:自主招生问题
题型十七:顺序排位问题
题型十八:博彩问题
【典例例题】
题型一:决策问题
例1.某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个100元,在机器使用期间,如果备件不足再购买,则每个300元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.
(1)求X的分布列;
(2)以购买易损零件所需费用的期望为决策依据,在与之中选其一,应选用哪个更合理?
【解析】(1)由柱状图并以频率代替概率可得,
一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,
X的可能取值为16,17,18,19,20,21,22,
从而;
;
;
;
;
;
;
所以X的分布列为
X
16
17
18
19
20
21
22
P
0.04
0.16
0.24
0.24
0.2
0.08
0.04
(2)购买零件所需费用含两部分:
一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,
当时,费用的期望为:
元,
当时,费用的期望为:
元,
因为,所以选更适合.
题型二:道路通行问题
例2. 市民李先生居住在甲地,工作在乙地,他的小孩就读的小学在丙地,三地之间的道路情况如图所示.假设工作日不走其它道路,只在图示的道路中往返,每次在路口选择道路是随机的.同一条道路去程与回程是否堵车相互独立.假设李先生早上需要先开车送小孩去丙地小学,再返回经甲地赶去乙地上班.假设道路A,B,D上下班时间往返出现拥堵的概率都是,道路C,E上下班时间往返出现拥堵的概率都是,只要遇到拥堵上学和上班的都会迟到.
(1)求李先生的小孩按时到校的概率;
(2)李先生是否有七成把握能够按时上班?
(3)设X表示李先生下班时从单位乙到达小学丙遇到拥堵的次数,求X的均值.
【解析】(1)因为道路D、E上班时间往返出现拥堵的概率分别是和,因此从甲到丙遇到拥堵的概率是:×+×=,故李先生的小孩能够按时到校的概率是1-=.
(2)甲到丙没有遇到拥堵的概率是,丙到甲没有遇到拥堵的概率也是,甲到乙遇到拥堵的概率是×+×+×=,甲到乙没有遇到拥堵的概率是1-=,
∴李先生上班途中均没有遇到拥堵的概率是××=
相关教案
这是一份备战2024新高考-高中数学二轮重难点专题37-切线与切点弦问题,文件包含2024新高考二轮重难点专题37切线与切点弦问题原卷版docx、2024新高考二轮重难点专题37切线与切点弦问题解析版docx等2份教案配套教学资源,其中教案共17页, 欢迎下载使用。
这是一份备战2024新高考-高中数学二轮重难点专题36-双切线问题,文件包含2024新高考二轮重难点专题36双切线问题原卷版docx、2024新高考二轮重难点专题36双切线问题解析版docx等2份教案配套教学资源,其中教案共24页, 欢迎下载使用。
这是一份备战2024新高考-高中数学二轮重难点专题18-数列的综合应用,文件包含2024新高考二轮重难点专题18数列的综合运用原卷版docx、2024新高考二轮重难点专题18数列的综合运用解析版docx等2份教案配套教学资源,其中教案共32页, 欢迎下载使用。