人教版六年级数学上册【课本】六年级(上)第18讲 最值问题二
展开第十八讲 最值问题二
一、最值问题中的常用方法
a) 极端思考
在分析某些最值问题时,可以考虑把问题推向“极端”,因为当某一问题被推向“极端”后,往往能排除许多枝节问题的干扰,使问题的“本来面目”清楚地显露出来,从而使问题迅速获解.
b) 枚举比较
根据题目的要求,把可能的答案一一枚举出来,使题目的条件逐步缩小范围,筛选比较出题目的答案.
c) 分析推理
根据两个事物在某些属性上都相同,猜测它们在其他属性上也有可能相同的推理方法.
d) 构造调整
在寻求解题途径难以进展时,构造出新的式子或图形,往往可以取得出奇制胜的效果.
二、求最大值和最小值的结论
1. 和一定的两个数,差越小,积越大;
2. 积一定的两个数,差越小,和越小;
3. 两点之间线段最短.
例1. 用一根长80厘米的铁丝焊接成一个棱长都是整数厘米的长方体框架,这个长方体的体积最大是多少立方厘米?
「分析」题目的限制条件是铁丝长为80厘米,要求体积的最大值,通过什么可以把这二者联系起来呢?
练习1、(1)用一根长100厘米的铁丝焊接成一个棱长都是整数厘米的长方体框架,这个长方体的体积最大是多少立方厘米?
(2)有一根铁丝,它能焊接成的棱长都是整数厘米的最大长方体的体积是36立方厘米,这根铁丝的长度是多少厘米?
例2. 有5袋糖,其中任意3袋的总块数都超过60.这5袋糖块总共最少有多少块?
「分析」每3袋的总块数都超过60,要求5袋的总块数.事实上我们以前做过类似的题:“已知三个数两两的和数,求这三个数的总和.”这样的题大家是怎么处理的呢?它的处理方法能否应用到本题中来呢?
练习2、有5个学生参加暑期竞赛班,每人都拿了不少积分(所有积分都是整数).如果其中每三人的积分之和都不少于500分,那这五人的总积分最少是多少?
例3. 用1、2、3、4、5、6、7、8、9各一个组成3个三位数,使得它们都是9的倍数,并且要求乘积最大,请写出这个乘法算式.
「分析」为了让这样的三个数的乘积最大,我们当然要让三个数的首位最大.那么首位应该是多少呢?注意到这三个数都是9的倍数,9的倍数有什么特征呢?它对这三个数提出了怎样的要求?
练习3、用1、2、3、4、5、6各一个组成两个三位数,使得它们都是3的倍数,并且要求乘积最大,请写出这个乘法算式.
例4. 把1至99依次写成一排,行成一个多位数:.从中划去99个数字,剩下的数字组成一个首位不是0的多位数.请问:剩下的数最大可能是多少?最小可能是多少?
「分析」要使得到的数最大,所得的数前面几位应该是什么?如果要最小呢?
练习4、把1至20依次写成一排,行成一个多位数:.从中划去20个数字,剩下的数字组成一个首位不是0的多位数.请问:剩下的数最大可能是多少?最小可能是多少?
例5. 邮递员送信件的街道如图所示,每一小段街道长1千米.如果邮递员从邮局出发,必须走遍所有的街道,那么邮递员最少需要走多少千米?
「分析」如果邮递员恰好没有重复地走遍所有的街道,则这样走的总路程就是最短的.那么邮递员能做到这一点吗?实际上这是一个一笔画问题,同学们回想一下,什么样的图形才能一笔画出来呢?
例6. 如图,有一个长方体的柜子,一只蚂蚁要从左下角的A点出发,沿柜子表面爬到右上角的B点去取食物,蚂蚁爬行路线的长度最短是多少?一共有几条最短路线?请在图中表示出来.
「分析」众所周知,两点之间线段最短.然而在本题中,蚂蚁是不能穿过柜子的,只能在柜子表面爬行.这样一来,我们就要在柜子表面寻找一条从A到B的最短路线.可是蚂蚁应该怎么走才能距离最短呢?
罐头装箱问题
我们经常遇到把圆柱体罐头放入长方体包装箱的问题,怎么摆放才能最有效地利用包装箱内的空间呢?
一种显而易见的办法是把各圆排列成矩形的形状,像图1这样.它是一种较优排法,但不是最优的办法.没有最大限度地利用空间,浪费不少,圆的面积只占总共的78.5%.
比上述办法好得多的办法,是将罐头摆放成图2所示的六边形.不难算出,正六边形内圆所覆盖的面积超过了90%.实际上,数学家已经证明了如果空间是无限延展的,这种六边形摆放法是最紧密的包装方式.
但是正六边形摆法的最紧密性质是有条件的,尤其在盒子不太大的时候.例如要放9个罐头,正六边形摆法需要的正方形不是最小的.如图3,它的放法就不比图4好.
当罐头数目增加时,放罐头的最佳包装法会不断在变,越来越倾向于正六边形排法.
比如,13个罐头的最优包装法,用边长大约为圆直径3.7倍的正方形就够了.如图5,虽然它看上去乱糟糟,但已被证明为最优解.我们可以看到,12个罐头紧紧地靠在一起,而第13个(黄色的那个)则自由自在地放在中间.
最后,大家思考一个问题:设1角钱硬币的直径为a厘米,那么我们在边长为10a厘米的正方形中,最多可以不重叠地放入多少枚硬币呢?是100枚吗?能否放进去更多?
作业
- 用一根长120厘米的铁丝焊接成一个棱长都是整数厘米的长方体框架,这个长方体的体积最大是多少立方厘米?
- 高、娅、莫、萱四人各有若干块高思勋章,其中任意两人的勋章合起来都少于10块,那么这四人的勋章合起来最多有多少块?
- 用1、2、3、4、5、6、7、8各一个组成两个四位数,使得它们都是3的倍数,并且要求乘积最大,请写出这个乘法算式.
- 把21至40依次写成一排,行成一个多位数:.从中划去20个数字,剩下的数字组成一个首位不是0的多位数.请问:剩下的数最大可能是多少?最小可能是多少?
- 如果例题5中的街道由“土”字形变成如下所示的形状,那么邮递员从邮局出发,要走遍所有的街道,最少需要走多少千米?
人教版六年级数学上册【课本】六年级(上)第23讲 行程问题超越提高: 这是一份人教版六年级数学上册【课本】六年级(上)第23讲 行程问题超越提高,共7页。
人教版六年级数学上册【课本】六年级(上)第12讲 复杂行程问题: 这是一份人教版六年级数学上册【课本】六年级(上)第12讲 复杂行程问题,共7页。
人教版六年级数学上册【课本】六年级(上)第11讲 间隔发车问题: 这是一份人教版六年级数学上册【课本】六年级(上)第11讲 间隔发车问题,共6页。