|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年高考数学第一轮复习4.2 同角三角函数的基本关系及三角函数的诱导公式(解析版) 试卷
    立即下载
    加入资料篮
    2024年高考数学第一轮复习4.2   同角三角函数的基本关系及三角函数的诱导公式(解析版) 试卷01
    2024年高考数学第一轮复习4.2   同角三角函数的基本关系及三角函数的诱导公式(解析版) 试卷02
    2024年高考数学第一轮复习4.2   同角三角函数的基本关系及三角函数的诱导公式(解析版) 试卷03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年高考数学第一轮复习4.2 同角三角函数的基本关系及三角函数的诱导公式(解析版)

    展开
    这是一份2024年高考数学第一轮复习4.2 同角三角函数的基本关系及三角函数的诱导公式(解析版),共21页。试卷主要包含了同角三角函数的基本关系,三角函数的诱导公式等内容,欢迎下载使用。

    4.2  同角三角函数的基本关系及三角函数的诱导公式

    思维导图

     

     

     

     

    知识点总结

    1.同角三角函数的基本关系

    (1)平方关系:sin2αcos2α1.

    (2)商数关系:tan α.

    2.角函数的诱导公式

    公式

    2kπα(kZ)

    πα

    α

    πα

    α

    α

    正弦

    sin α

    sin__α

    sin__α

    sin__α

    cos__α

    cos__α

    余弦

    cos α

    cos__α

    cos__α

    cos__α

    sin__α

    sin__α

    正切

    tan α

    tan__α

    tan__α

    tan__α

     

     

    口诀

    奇变偶不变,符号看象限

    [常用结论]

    1.同角三角函数关系式的常用变形

    (sin α±cos α)21±2sin αcos αsin αtan α·cos α.

    2.诱导公式的记忆口诀

    奇变偶不变,符号看象限,其中的奇、偶是指的奇数倍和偶数倍,变与不变指函数名称的变化.

    3.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.

     

     

     

    典型例题分析

    考向一 同角三角函数基本关系式的应用

    1 (1)已知cos α=-,则13sin α5tan α________.

    答案 0

    解析 cos α=-0cos α1

    α是第二或第三象限角.

    α是第二象限角,

    sin α

    tan α=-.

    此时13sin α5tan α13×5×0.

    α是第三象限角,

    sin α=-=-=-


    tan α

    此时,13sin α5tan α13×5×0.

    综上,13sin α5tan α0.

    (2)已知=-1,则________sin2αsin αcos α2________.

    答案  

    解析 由已知得tan α

    所以=-.

    sin2αsin αcos α2222.

    (3)(多选)已知θ(0π)sin θcos θ,则下列结论正确的是(  )

    A.sin θ  B.cos θ=-

    C.tan θ=-  D.sin θcos θ

    答案 ABD

    解析 由题意知sin θcos θ

    (sin θcos θ)212sin θcos θ

    2sin θcos θ=-0

    θ(0π)θπ

    sin θcos θ0

    sin θcos θ

    sin θcos θ=-.

    tan θ=-ABD正确.

    感悟提升 同角三角函数关系式的应用方法

    (1)利用sin2αcos2α1可实现角α的正弦、余弦的互化,利用tan α可实现角α的弦切互化.

    (2)由一个角的任一三角函数值可求出这个角的另外两个三角函数值,当利用平方关系公式求平方根时,会出现两解,需根据角所在的象限判断角的符号,当角所在的象限不明确时,要进行分类讨论.

     

    考向二 诱导公式的应用

     

    2 (1)(2023·长沙调研)已知sin,则cos(  )

    A.  B. 

    C.  D.±

    答案 C

    解析 sin

    coscossin.故选C.

    (2)f(α)

    (12sin α0),则f________.

    答案 

    解析 因为f(α)

    所以f.

     

    感悟提升 1.诱导公式的应用步骤

    任意负角的三角函数任意正角的三角函数0内的角的三角函数锐角三角函数.

    2.诱导公式的两个应用

    (1)求值:负化正,大化小,化到锐角为终了.

    (2)化简:统一角,统一名,同角名少为终了.

     

    考向三 同角关系式和诱导公式的综合应用

    3 已知f(α).

    (1)化简f(α)

    (2)α=-,求f(α)的值;

    (3)cosα,求f(α)的值.

     (1)f(α)

    =-cos α.

    (2)α=-

    f(α)=-cos=-cos =-.

    (3)cos

    可得sin α=-

    因为α,所以cos α=-

    所以f(α)=-cos α.

    感悟提升 1.利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形.

    2.注意角的范围对三角函数符号的影响.

     

    基础题型训练

     

    一、单选题

    1.下列等式恒成立的是(    

    A B

    C D

    【答案】D

    【分析】根据三角函数诱导公式逐项判断.

    【详解】

    .

    故选:D

    【点睛】本题考查三角函数诱导公式,属于基础题.

    2.下列命题中,命题正确的是(    

    A.终边相同的角一定相等

    B.第一象限的角是锐角

    C.若,则角的三角函数值等于角的同名三角函数值

    D.半径为的圆心角所对的弧长为

    【答案】C

    【分析】根据角的概念的推广、弧度的定义和三角函数的定义,结合代特值即可得到答案.

    【详解】根据三角函数的定义,易知C正确,

    A终边相同,故A错误;

    B在第一象限,但不是锐角,故B错误;

    D,弧长应该为弧度乘以半径,故D错误.

    故选:C.

    3.已知,则    

    A B C D

    【答案】D

    【分析】由条件利用同角三角函数的基本关系求得的值.

    【详解】因为,则 .

    故选:D.

    4 的值为(    

    A B C D

    【答案】A

    【分析】根据诱导公式化简,利用三角函数特殊值即可得答案.

    【详解】.

    故选:A.

    5.已知角的终边交单位圆于点A,将A绕原点顺时针旋转,则的坐标为(    

    A B

    C D

    【答案】C

    【分析】作出简图,由三角函数定义及诱导公式计算即可.

    【详解】如图所示,易知B100°与单位圆的交点,

     


    由三角函数的定义可知

    由诱导公式化简可得.

    故选:C

    6.如果,且,那么的值是 (  )

    A B

    C D

    【答案】A

    【详解】将所给等式两边平方,得

    s

    .

    故选A.

     

    二、多选题

    7    

    A B

    C D

    【答案】BD

    【分析】利用诱导公式确定正确答案.


    【详解】A错误;

    B正确;

    C错误;

    D正确.

    故选:BD

    8.(多选)若的终边关于轴对称,则下列等式成立的是(  

    A B

    C D

    【答案】AB

    【分析】利用对称性,求出间的关系,再利用诱导公式,即可得到间的关系,从而得出结果.

    【详解】因为的终边关于轴对称,所以

    所以根据诱导公式可知,

    所以选项AB正确,选项CD错误.

    故选:AB.

     

    三、填空题

    9.已知,且,则_________.

    【答案】

    【分析】根据诱导公式可得,再利用同角三角函数的基本关系即可求解.

    【详解】

    故答案为:

    【点睛】本题考查诱导公式、同角三角函数关系,考查基本分析求解能力,属基础题.

    10.已知,则___________.


    【答案】

    【分析】由可得,即,由同角三角函数的平方关系和商数关系,即得解

    【详解】由题意,

    故答案为:

    11.已知,则_________.

    【答案】

    【分析】利用诱导公式对方程进行化简,再解关于的方程即可.

    【详解】原式,解得:.

    故答案为:.

    【点睛】本题考查诱导公式、同角三角函数的基本关系,考查转化与化归思想,考查逻辑推理能力和运算求解能力.

    12.已知函数是定义在上的奇函数,对都有成立,当时,有.给出下列命题:

    1

    2[-22]上有5个零点

    3)点(20140)是函数的一个对称中心

    4)直线是函数图像的一条对称轴.

    则正确的是________

    【答案】(1)(2)(3

    【分析】(1)利用赋值法,令,直接求得;(2)直接判断出-2-1012的零点;

    3)转化得到,即可判断出点(20140)是函数


    的一个对称中心,可判断出(3)正确;(4)错误.

    【详解】试题分析:(1)由题意,令,则,即,则

    2)由题意,,则[-22]上有5个零点.

    3)由,可知2为周期,所以

    所以,所以点是函数的一个对称中心,

    4)由于(3)正确,故(4)不正确.

    故答案为:(1)(2)(3

     

    四、解答题

    13.设,求.

    【答案】

    【分析】先利用诱导公式和同角三角函数基本关系式化简,再代入求值.

    【详解】由

     

    .

    【点睛】本题考查了诱导公式和同角三角函数基本关系式,先化简再代值是解决问题的关键.

    14.已知函数,求的值.

    【答案】

    【分析】代入,利用诱导公式和特殊角的三角函数值计算即得解

    【详解】由题意,

    15.已知,求下列各式的值.

    1;(2

    【答案】(1;(2.

    【分析】(1)根据题意,结合同角三角函数的关系,可得,根据的范围,可得,即可得答案.

    2)由(1)可得的值,代入所求,即可得答案.

    【详解】(1)因为

    所以,即

    所以

    因为

    ,所以,则

    所以

    2)由已知条件及(1),可知,解得

    所以

    16.(1)已知,求的值;

    2)已知,求的值.

    【答案】(1;(2.

    【分析】(1)利用诱导公式和同角三角函数的商数关系即可求解;

    2)利用诱导公式和同角三角函数的基本关系即可求解.

    【详解】由

    所以

    故原式

    .  

    由题意,得.

     时,为第二象限的角.

    原式

    时,

    .

    原式.

    综上所述, .

     

     

    提升题型训练

    一、单选题

    1.已知,则的值为(    

    A B.-

    C D.-

    【答案】D

    【分析】根据诱导公式直接进行求解即可.

    【详解】

    故选:D

    2的值是(    

    A B C D

    【答案】A

    【解析】用诱导公式化负角为正角,化大角为小角,最终化为锐角的三角函数.

    【详解】

    故选:A.

    【点睛】本题考查诱导公式,掌握三角函数诱导公式是解题基础.

    3.若sin2x>cos2x,则x的取值范围是(   

    A{x|2kπ<x<2kπkZ}

    B{x|2<x<kZ}

    C{x|<x<kZ}

    D{x|kπ<x<kπkZ}

    【答案】D

    【分析】由题设可得|sin x|>|cos x|,单位圆中画出对应角的范围,即知x的取值范围.

    【详解】sin2x>cos2x|sin x|>|cos x|.

    在直角坐标系中作出单位圆及直线yxy=-x.如图,

    根据三角函数线的定义知角x的终边落在图中的阴影部分,不含边界.

    故选:D.

    4.化简:    

    A B C D

    【答案】D

    【分析】利用三角函数诱导公式、同角三角函数的基本关系化简求值即可.

    【详解】,

    故选:D

    5.在中的角满足,则    

    A B C D

    【答案】A

    【分析】首先利用诱导公式得到,利用平方关系得到,再利用同角三角函数关系式中的商关系求得,得到结果.

    【详解】由,得

    ,得

    所以

    故选:A.

    【点睛】该题考查的是有关角的三角函数值的求解问题,涉及到的知识点有诱导公式,同角三角函数关系式,属于简单题目.

    6.已知是第三象限角,若,则    

    A B C D

    【答案】C

    【分析】由题意得,再利用诱导公式化简即可得到答案.

    【详解】是第三象限角,若,由,得

    故选:C.

    二、多选题

    7.设为第一象限角,,则(    

    A

    B

    C

    D

    【答案】BD

    【分析】首先由题意得是第一象限角,所以,再利用诱导公式和同角三角函数关系式对选项逐个计算确定正确答案.

    【详解】由题意得,

    ,

    在第四象限,,

    所以也是第一象限角,,,A项错误;

    ,B项正确;

    ,C项错误;

    ,D项正确.

    故选:BD.

    8.在平面直角坐标系中,O是坐标原点,点cossin),则下列说法正确的是(    

    A.线段的长均为1 B.线段的长为1

    C.若点关于y轴对称,则 D.当时,点关于x轴对称

    【答案】ACD

    【分析】AB选项,根据勾股定理进行求解;C选项,根据点关于y轴对称,得到,进而求出D选项,代入后利用诱导公式进行求解,得到答案.

    【详解】,同理可求A正确;

    由题意得:,由勾股定理得:B错误;

    若点关于y轴对称,则,则,解得:C正确;

    时,,即,关于x轴对称,D正确.

    故选:ACD

     

    三、填空题

    9__________.

    【答案】

    【分析】运用诱导公式计算.

    【详解】

    故答案为: .

    10.若,____________

    【答案】

    【详解】试题分析:

    考点:同角间三角函数关系

    11.已知,则___________

    【答案】

    【详解】试题分析:由,所以,因为,所以,由,所以

    考点:同角间的三角函数关系.

    12.在中,abc分别为角ABC所对边的长,,则的面积是________.

    【答案】

    【分析】由,遇角化边后可求得,由正弦定理可求的,再由三角函数的知识,可求得,再代即可求解.

    【详解】解:由题意:

    故答案为:

    【点睛】本题主要考查解三角形,同角三角函数的关系等,考查理解辨析能力以及求解运算能力,属于中档题.

     

    四、解答题

    13.确定下列三角函数值的符号:

    (1)

    (2)

    (3)

    (4)

    (5)

    (6).

    【答案】(1)

    (2)

    (3)

    (4)

    (5)

    (6)

     

    【分析】由角的终边的位置和三角函数的符号规律逐个判断即可.

    (1)

    解:因为为第三象限角,所以为负;

    (2)

    解:因为为第二象限角,所以为负;

    (3)

    解:因为为第四象限角,所以为负;

    (4)

    解:因为为第一象限角,所以为正;

    (5)

    解:因为为第三象限角,所以为负;

    (6)

    解:因为为第二象限角,所以为负.

    14.已知,求下列各式的值

    (1)

    (2)

    【答案】(1)

    (2)

     

    【分析】(1)利用同角三角函数基本关系,分子分母同除 将弦化切,代入求解即可.

    2)利用同角三角函数基本关系式,将原式看做分母为的分数,利用平方关系,分子分母同除将弦化切,代入求解即可.

    【详解】(1)解:因为

    所以

    2)解:

    15.已知函数的表达式为,对于任何实数x都有意义,求的范围并判断所在的象限.

    【答案】在第一或二象限.

    【分析】由已知,恒成立,当不满足题意,当时,由即可求解.

    【详解】由已知,恒成立.

    时,,不合要求;

    时,

    解得.

    从而得:在第一或二象限.

    16(1)已知是关于x的方程的一个实根,且α是第三象限角,求的值;

    (2)已知,且,求的值.

    【答案】(1)(2).

    【分析】(1)由已知方程求,利用同角关系将转化为由表示的式子,由此可求其值,(2)由条件结合平方关系求,由此求结果.

    【详解】(1)∵是关于x的方程的一个实根,且α是第三象限角,

    (舍去),

    .

    (2)由题设,,解得

    .

     

     

    相关试卷

    2024年高考数学第一轮复习专题训练第四章 §4.2 同角三角函数基本关系式及诱导公式: 这是一份2024年高考数学第一轮复习专题训练第四章 §4.2 同角三角函数基本关系式及诱导公式,共4页。试卷主要包含了掌握诱导公式,并会简单应用.等内容,欢迎下载使用。

    高考数学第一轮复习第四章 §4.2 同角三角函数基本关系式及诱导公式: 这是一份高考数学第一轮复习第四章 §4.2 同角三角函数基本关系式及诱导公式,共19页。

    数学高考第一轮复习特训卷(文科)11 三角函数概念、同角三角函数基本关系及诱导公式 : 这是一份数学高考第一轮复习特训卷(文科)11 三角函数概念、同角三角函数基本关系及诱导公式 ,共3页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024年高考数学第一轮复习4.2 同角三角函数的基本关系及三角函数的诱导公式(解析版) 试卷
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map