所属成套资源:人教版2024年高考数学第一轮复习专题练习【精品原卷+解析卷】
2024年高考数学第一轮复习8.1 基本立体图形及几何体的表面积与体积(原卷版)
展开
这是一份2024年高考数学第一轮复习8.1 基本立体图形及几何体的表面积与体积(原卷版),共18页。试卷主要包含了空间几何体的结构特征,直观图的斜二测画法,简单几何体的表面积和体积等内容,欢迎下载使用。
8.1 基本立体图形及几何体的表面积与体积 思维导图知识点总结1.空间几何体的结构特征(1)多面体的结构特征名称棱柱棱锥棱台图形底面互相 且 多边形互相 且 侧棱 相交于 ,但不一定相等延长线交于
侧面形状 梯形(2)旋转体的结构特征 名称圆柱圆锥圆台球图形母线互相平行且相等, 于底面相交于 延长线交于 轴截面 等腰梯形圆面侧面展开图 扇环 2.直观图的斜二测画法(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为 ,z′轴与x′轴、y′轴所在平面 .(2)原图形中平行于坐标轴的线段,直观图中仍分别 坐标轴.平行于x轴和z轴的线段在直观图中保持原长度 ,平行于y轴的线段长度在直观图中变为原来的 .3.圆柱、圆锥、圆台的侧面展开图及侧面积公式 圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧= S圆锥侧= S圆台侧= 4.简单几何体的表面积和体积几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V= 锥体(棱锥和圆锥)S表面积=S侧+S底V= 台体(棱台和圆台)S表面积=S侧+S上+S下V=
球S= V= [常用结论]1.正方体与球的内切、外接常用结论:正方体的棱长为a,球的半径为R,(1)若球为正方体的外接球,则2R=a;(2)若球为正方体的内切球,则2R=a;(3)若球与正方体的各棱相切,则2R=a.2.长方体共顶点的三条棱长分别为a,b,c,其外接球的半径为R,则2R=.3.正四面体的外接球的半径R=a,内切球的半径r=a,其半径R∶r=3∶1(a为该正四面体的棱长).4.直观图与原平面图形面积间的关系S直观图=S原图形. 典型例题分析考向一 基本立体图形和直观图角度1 结构特征例1 给出下列四个命题,正确的是( )A.有两个侧面是矩形的立体图形是直棱柱B.侧面都是等腰三角形的棱锥是正棱锥C.侧面都是矩形的直四棱柱是长方体D.底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱 感悟提升 空间几何体结构特征的判断技巧(1)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定.
(2)通过反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.角度2 直观图例2如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A.2+ B.C. D.1+ 感悟提升 1.在斜二测画法中,要确定关键点及关键线段:“平行于x轴的线段平行性不变,长度不变;平行于y轴的线段平行性不变,长度减半.”2.按照斜二测画法得到的平面图形的直观图,其面积与原平面图形面积的关系:S直观图=S原图形.角度3 展开图例3(1) (2023·福州检测)在正三棱柱ABC-A1B1C1中,AB=AA1=2,F是线段A1B1上的动点,则AF+FC1的最小值为________. (2)已知圆锥的侧面积(单位:cm2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________. 感悟提升 几何体的表面展开图可以有不同的形状,应多实践、观察并大胆想象立体图形与表面展开图的关系,一定先观察立体图形的每一个面的形状.
考向二 面积与体积角度1 侧面积与表面积例4(2023·长沙质检)如图,一种棱台形状的无盖容器(无上底面A1B1C1D1)模型其上、下底面均为正方形,面积分别为4 cm2,9 cm2,且A1A=B1B=C1C=D1D.若该容器模型的体积为 cm3,则该容器模型的表面积为________. 角度2 体积例5 (1)(2023·肇庆质检)如图是战国时期的一个铜镞,其由两部分组成,前段是高为2 cm、底面边长为1 cm的正三棱锥,后段是高为0.6 cm的圆柱,圆柱底面圆与正三棱锥底面的正三角形内切,则此铜镞的体积约为( )A.0.25 cm3 B.0.65 cm3C.0.15 cm3 D.0.45 cm3
(2)(2022·新高考Ⅰ卷)南水北调工程缓解了北方一些地区水资源短缺的问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5 m时,相应水面的面积为140.0 km2;水位为海拔157.5 m时,相应水面的面积为180.0 km2.将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5 m上升到157.5 m时,增加的水量约为(≈2.65)( )A.1.0×109 m3 B.1.2×109 m3C.1.4×109 m3 D.1.6×109 m3 (3)(2023·潍坊模拟)《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”意思为:今有底面为矩形的屋脊形状的多面体(如图),下底面宽AD=3丈,长AB=4丈,上棱EF=2丈,EF与平面ABCD平行,EF与平面ABCD的距离为1丈,则它的体积是( )A.4立方丈 B.5立方丈C.6立方丈 D.8立方丈 (3)(2020·新高考Ⅱ卷)棱长为2的正方体ABCD-A1B1C1D1中,M,N分别为棱BB1,AB
的中点,则三棱锥A1-D1MN的体积为________. 感悟提升 1.空间几何体表面积的求法(1)旋转体的表面积问题注意其轴截面及侧面展开图的应用,并弄清底面半径、母线长与对应侧面展开图中边的关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.2.求空间几何体的体积的常用方法(1)公式法:规则几何体的体积问题,直接利用公式进行求解;(2)割补法:把不规则的几何体分割成规则的几何体,或者把不规则的几何体补成规则的几何体;(3)等体积法:通过选择合适的底面来求几何体体积的一种方法,特别是三棱锥的体积.基础题型训练 一、单选题1.半径为1的球的表面积为( )A. B. C. D.2.如图所示,是水平放置的的直观图,轴,轴,,,则中,( )
A. B. C. D.3.用斜二测画法画水平放置的的直观图如图所示,则在的三边及中线AD中,最长的线段是( )A.AB B.AD C.BC D.AC4.某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是( )A. B.
C. D.5.若一个圆锥的高为3,母线与底面所成角为60°,则该圆锥的侧面积为( )A.3π B.3π C.6π D.6π6.已知一圆柱的轴截面为正方形,母线长为6,在该圆柱内放置一个棱长为a的正四面体,并且正四面体在该圆柱内可以任意转动,则a的最大值为( )A. B. C. D.2 二、多选题7.下列关于圆柱的说法中正确的是( )A.圆柱的所有母线长都相等B.用平行于圆柱底面的平面截圆柱,截面是与底面全等的圆面C.用一个不平行于圆柱底面的平面截圆柱,截面是一个圆面D.一个矩形以其对边中点的连线为旋转轴,旋转所形成的几何体是圆柱8.下列命题正确的是( )A.长方体是直四棱柱,直四棱柱是长方体B.有两个面平行,其他各个面都是平行四边形的多面体是棱柱C.有一个面是平行四边形的棱锥一定是四棱锥D.正棱锥的侧面是全等的等腰三角形 三、填空题9.半径为的球的表面积为___________.10.已知圆台的上、下底面半径分别为2和5,圆台的高为3,则此圆台的体积为__.11.现有一个棱长为3的正方体,如果以这个正方体的一个顶点为球心,以为半径作球面,那么该球面被这个正方体的表面所截得的所有弧长的和为__________.12.往一球型容器注入cm3的水,测得水面圆的直径为cm,水深为cm,若以cm3/s的速度往该容器继续注水,当再次测得水面圆的直径为cm时,则需经过______s. 四、解答题
13.作出圆锥的直观图.14.如果一个几何体的正视图与侧视图都是全等的长方形,边长分别是与.如图所示,俯视图是一个边长为的正方形.(1)求该几何体的表面积;(2)求该几何体的体积.15.如图圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,为圆柱上下底面的圆心,为球心,为底面圆的一条直径,若球的半径.若为球面和圆柱侧面的交线上一点,求的取值范围. 16.若已知一个三角形的面积为S,它的直观图面积是多少?
提升题型训练 一、单选题1.一个圆锥的侧面展开的扇形面积是底面圆面积的2倍,若该圆锥的体积为,则该圆锥的母线长为( )A.3 B. C.6 D.2.已知圆柱的轴截面为正方形,其外接球为球,球的表面积为,则该圆柱的体积为( )A. B. C. D.3.如图,一个水平放置的面积是的平面图形的斜二测直观图是等腰梯形,其中,则等腰梯形面积为( )A. B. C. D.4.在三棱锥中,,二面角为直二面角,当三棱锥的体积的最大值为时,其外接球的表面积为( )A. B. C. D.5.在正三棱锥中,、分别是棱、的中点,且,若侧棱,则正三棱锥外接球的体积是( )A. B. C. D.6.棱长为2的正方体截去四个小三棱锥所得几何体的三视图如图所示,则该几何体的体积是( )
A.4 B. C. D.8 二、多选题7.我国古代数学名著《九章算术》中将正四棱锥称为方锥.已知半球内有一个方锥,方锥的底面内接于半球的底面,方锥的顶点在半球的球面上,若方锥的体积为18,则半球的说法正确的是( )A.半径是3 B.体积为C.表面积为 D.表面积为8.我们把所有棱长都相等的正棱柱(锥)叫“等长正棱柱(锥)”,而与其所有棱都相切的称为棱切球,设下列“等长正棱柱(锥)”的棱长都为1,则下列说法中正确的有( )A.正方体的棱切球的半径为B.正四面体的棱切球的表面积为C.等长正六棱柱的棱切球的体积为D.等长正四棱锥的棱切球被棱锥5个面(侧面和底面)截得的截面面积之和为 三、填空题9.已知正方形的面积为4,其直观图是四边形,则四边形的面积是____________.10.已知圆锥的表面积为a,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为__________m.11.四面体中,底面,,,则四面体的外接球的表面积为______12.在直三棱柱中,,,,则此直三棱柱的外接球的表面积是
______. 四、解答题13.把一个圆锥截成圆台,已知圆台的上、下底面积之比是1:16,圆台的母线长为15,求圆锥的母线长.14.在三棱锥中,,,,,侧棱SB与底面ABC垂直,求三棱锥的外接球半径.15.在如图所示几何体中,平面平面,,,,,.若该几何体左视图(侧视图)的面积为.(1)画出该几何体的主视图(正视图)并求其面积;(2)求出多面体的体积.16.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于441 cm2,母线与轴的夹角是45°,求这个圆台的高、母线长和两底面半径.
相关试卷
这是一份专题8.1 基本立体图形及几何体的表面积与体积-2024年高考数学一轮复习《考点•题型 •技巧》精讲与精练,文件包含81基本立体图形及几何体的表面积与体积原卷版docx、81基本立体图形及几何体的表面积与体积解析版docx等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。
这是一份2024年高考数学第一轮复习专题训练第七章 §7.1 基本立体图形、简单几何体的表面积与体积,共6页。试卷主要包含了直观图,4 cm2 D.1 570等内容,欢迎下载使用。
这是一份2024年高考数学第一轮复习8.1 基本立体图形及几何体的表面积与体积(解析版),共38页。试卷主要包含了空间几何体的结构特征,直观图的斜二测画法,简单几何体的表面积和体积,5-148等内容,欢迎下载使用。