2024年数学高考大一轮复习第三章 §3.7 利用导数研究函数的零点
展开1.(2023·济南质检)已知函数f(x)=,a∈R.
(1)若a=0,求f(x)的最大值;
(2)若0<a<1,求证:f(x)有且只有一个零点.
2.函数f(x)=ax+xln x在x=1处取得极值.
(1)求f(x)的单调区间;
(2)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范围.
3.(2022·河南名校联盟模拟)已知f(x)=(x-1)ex-ax3+a(a∈R).
(1)若函数f(x)在[0,+∞)上单调递增,求a的取值范围;
(2)当a≤e时,讨论函数f(x)零点的个数.
4.已知函数f(x)=ln x-ax2+x,a∈R.
(1)当a=0时,求曲线y=f(x)在点(e,f(e))处的切线方程;
(2)讨论f(x)的单调性;
(3)若f(x)有两个零点,求a的取值范围.
2024年高考数学第一轮复习专题训练第三章 §3.7 利用导数研究函数的零点: 这是一份2024年高考数学第一轮复习专题训练第三章 §3.7 利用导数研究函数的零点,共5页。
2024年数学高考大一轮复习第三章 §3.7 利用导数研究函数的零点: 这是一份2024年数学高考大一轮复习第三章 §3.7 利用导数研究函数的零点,共6页。
高考数学第一轮复习第三章 §3.7 利用导数研究函数零点: 这是一份高考数学第一轮复习第三章 §3.7 利用导数研究函数零点,共13页。试卷主要包含了已知函数f=ex+ax-a,已知函数f=eq \f-2等内容,欢迎下载使用。