
华师大版八年级上册14.2 勾股定理的应用第2课时教学设计
展开第2课时 勾股定理的应用(2)
【基本目标】
1.会用勾股定理解决简单的实际问题.
2.树立数形结合的思想.
【教学重点】
勾股定理的应用.
【教学难点】
实际问题向数学问题的转化.
一、创设情景,导入新课
从实际问题中抽象出几何图形,让学生画好图后标图;在实际问题向数学问题的转化过程中,注意勾股定理的使用条件,教师要向学生交代清楚,解释明白;优化训练,在不同条件、不同环境中反复运用定理,使学生达到熟练使用,灵活运用的程度;让学生深入探讨,积极参与到课堂中,发挥学生的积极性和主动性.
二、师生互动,探究新知
例1如右图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.
【分析】蚂蚁实际上是在圆柱的半个侧面内爬行,如果将这半个侧面展开(如图),得到矩形ABCD,根据“两点之间,线段最短”,所求的最短路程就是侧面展开图矩形对角线AC之长.(精确到0.01cm)
解:如下图,在Rt△ABC中,BC=底面周长的一半=10cm,
∴ AC=Ab2+Bc2=42+102=116≈10.77(cm)(勾股定理).
答:最短路程约为10.77cm.
三、随堂练习,巩固新知
完成练习册中本课时对应的课后作业部分.
四、典例精析,拓展新知
例2一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如右图的某工厂,问这辆卡车能否通过该工厂的厂门?
【分析】由于厂门宽度足够,所以卡车能否通过,只要看当卡车位于厂门正中间时其高度是否小于CH.如图所示,点D在离厂门中线0.8米处,且CD⊥AB, 与地面交于H.
解:在Rt△OCD中,由勾股定理得
CH=0.6+2.3=2.9(米)>2.5(米).
因此高度上有0.4米的余量,所以卡车能通过厂门.
五、运用新知,深化理解.
完成教材P123习题14.2中的第5题.
六、师生互动,课堂小结
这节课你学习了什么?有何收获?有何困惑?与同伴交流,在学生交流发言的基础上,教师归纳总结.
完成练习册中本课时对应的课后作业部分.
本课时所学内容是用勾股定理解决简单的实际问题(或数学问题).在实际生活中,很多问题可以用勾股定理解决,而解决这类问题都需要将其转化为数学问题,也就是通过构造直角三角形来完成.教学时应注意如何构造直角三角形,找出已知两个量,求出第三个量,或者利用勾股定理建立几个量之间的关系,解决问题时注意让学生动手,画出图形,从而建立直角三角形模型.本节课中由勾股定理解决立体图形上的最短路径问题,比较抽象,注意化“曲”为“平”,让学生动手操作,真正建立立体图形与平面图形之间的联系.
初中数学华师大版八年级上册第14章 勾股定理14.2 勾股定理的应用教案: 这是一份初中数学华师大版八年级上册第14章 勾股定理14.2 勾股定理的应用教案,共3页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。
数学华师大版14.2 勾股定理的应用第1课时教案: 这是一份数学华师大版14.2 勾股定理的应用第1课时教案,共2页。教案主要包含了基本目标,教学重点,教学难点,教师点拨等内容,欢迎下载使用。
华师大版八年级上册14.2 勾股定理的应用教学设计及反思: 这是一份华师大版八年级上册14.2 勾股定理的应用教学设计及反思,共6页。教案主要包含了知识与能力,过程与方法,情感态度价值观,教学重点,教学难点等内容,欢迎下载使用。