所属成套资源:2024年高考数学第一轮复习资料(附独立答案)
2024年高考数学第一轮复习专题训练第八章 §8.6 双曲线
展开这是一份2024年高考数学第一轮复习专题训练第八章 §8.6 双曲线,共5页。
§8.6 双曲线
考试要求 1.了解双曲线的定义、几何图形和标准方程.2.掌握双曲线的几何性质(范围、对称性、顶点、渐近线、离心率).3.了解双曲线的简单应用.
知识梳理
1.双曲线的定义
把平面内与两个定点F1,F2的距离的差的 等于非零常数( |F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的 ,两焦点间的距离叫做双曲线的 .
2.双曲线的标准方程和简单几何性质
标准方程 | -=1(a>0,b>0) | -=1(a>0,b>0) | |
图形 | |||
性质 | 焦点 |
|
|
焦距 |
| ||
范围 | 或 ,y∈R | y≤-a或y≥a,x∈R | |
对称性 | 对称轴: ;对称中心:______ | ||
顶点 |
|
| |
轴 | 实轴:线段 ,长: ;虚轴:线段B1B2,长: ,实半轴长: ,虚半轴长:_____ | ||
渐近线 | y=±x | y=±x | |
离心率 | e=∈_________ | ||
a,b,c的关系 | c2= (c>a>0,c>b>0) |
常用结论
1.双曲线的焦点到其渐近线的距离为b.
2.若P是双曲线右支上一点,F1,F2分别为双曲线的左、右焦点,则|PF1|min=a+c,|PF2|min=c-a.
3.同支的焦点弦中最短的为通径(过焦点且垂直于实轴的弦),其长为.
4.若P是双曲线上不同于实轴两端点的任意一点,F1,F2分别为双曲线的左、右焦点,则=,其中θ为∠F1PF2.
5.与双曲线-=1(a>0,b>0)有共同渐近线的方程可表示为-=t(t≠0).
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)平面内到点F1(0,4),F2(0,-4)的距离之差的绝对值等于8的点的轨迹是双曲线.( )
(2)方程-=1(mn>0)表示焦点在x轴上的双曲线.( )
(3)双曲线-=1(m>0,n>0)的渐近线方程是±=0.( )
(4)等轴双曲线的渐近线互相垂直,离心率等于.( )
教材改编题
1.已知曲线C的方程为+=1(k∈R),若曲线C是焦点在y轴上的双曲线,则实数k的取值范围是( )
A.-1<k<5 B.k>5
C.k<-1 D.k≠-1或5
2.双曲线2y2-x2=1的渐近线方程是( )
A.y=±x B.y=±2x
C.y=±x D.y=±x
3.设P是双曲线-=1上一点,F1,F2分别是双曲线的左、右焦点,若|PF1|=9,则|PF2|=________.
题型一 双曲线的定义及应用
例1 (1)(2022·洛阳模拟)在平面直角坐标系中,已知△ABC的顶点A(-3,0),B(3,0),其内切圆圆心在直线x=2上,则顶点C的轨迹方程为( )
A.-=1(x>2)
B.-=1(x>3)
C.+=1(0<x<2)
D.+=1(0<x<3)
(2)已知F1,F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,∠F1PF2=60°,则△F1PF2的面积为__________.
听课记录:______________________________________________________________
________________________________________________________________________
思维升华 在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF1|-|PF2||=2a,运用平方的方法,建立与|PF1|·|PF2|的联系.
跟踪训练1 (1)已知圆C1:(x+3)2+y2=1,C2:(x-3)2+y2=9,动圆M同时与圆C1和圆C2相外切,则动圆圆心M的轨迹方程为( )
A.x2-=1 B.-y2=1
C.x2-=1(x≤-1) D.x2-=1(x≥1)
(2)(2022·荆州模拟)已知双曲线C:-=1的左、右焦点分别是F1,F2,点P是C的右支上的一点(不是顶点),过F2作∠F1PF2的角平分线的垂线,垂足是M,O是原点,则|MO|=________.
题型二 双曲线的标准方程
例2 (1)(2021·北京)双曲线C:-=1(a>0,b>0)过点(,),且离心率为2,则该双曲线的标准方程为( )
A.x2-=1 B.-y2=1
C.x2-=1 D.-y2=1
(2)(2023·连云港模拟)在平面直角坐标系中,已知双曲线-=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形,则双曲线的标准方程为( )
A.-=1 B.-=1
C.-y2=1 D.x2-=1
听课记录:______________________________________________________________
________________________________________________________________________
思维升华 求双曲线的标准方程的方法
(1)定义法:由题目条件判断出动点轨迹是双曲线,确定2a,2b或2c,从而求出a2,b2.
(2)待定系数法:“先定型,再定量”,如果焦点位置不好确定,可将双曲线方程设为-=λ(λ≠0),再根据条件求λ的值.
跟踪训练2 (1)已知双曲线-=1(a>0,b>0)的离心率为2,左焦点到渐近线的距离为2,则双曲线的方程为( )
A.-=1 B.-=1
C.-=1 D.-=1
(2)(2023·廊坊模拟)江西景德镇青花瓷始创于元代,到明清两代达到了顶峰,它蓝白相映怡然成趣,晶莹明快,美观隽永.现有某青花瓷花瓶的外形可看成是焦点在x轴上的双曲线的一部分绕其虚轴旋转所形成的曲面,如图所示,若该花瓶的瓶身最小的直径是4,瓶口和底面的直径都是8,瓶高是6,则该双曲线的标准方程是( )
A.-=1 B.-y2=1
C.-=1 D.-=1
题型三 双曲线的几何性质
命题点1 渐近线
例3 (1)(2022·北京)已知双曲线y2+=1的渐近线方程为y=±x,则m=________.
(2)(2022·连云港模拟)若双曲线经过点(1,),其渐近线方程为y=±2x,则双曲线的方程是________.
听课记录:______________________________________________________________
________________________________________________________________________
思维升华 (1)渐近线的求法:求双曲线-=1(a>0,b>0)的渐近线的方法是令-=0,即得两渐近线方程±=0.
(2)在双曲线的几何性质中,重点是渐近线方程和离心率,在双曲线-=1(a>0,b>0)中,离心率e与双曲线的渐近线的斜率k=±,满足关系式e2=1+k2.
命题点2 离心率
例4 (1)(2021·全国甲卷)已知F1,F2是双曲线C的两个焦点,P为C上一点,且∠F1PF2=60°,|PF1|=3|PF2|,则C的离心率为( )
A. B. C. D.
(2)(2022·全国甲卷)记双曲线C:-=1(a>0,b>0)的离心率为e,写出满足条件“直线y=2x与C无公共点”的e的一个值________.
听课记录:______________________________________________________________
________________________________________________________________________
思维升华 求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量a,b,c的方程或不等式,利用c2=a2+b2和e=转化为关于e的方程(或不等式),通过解方程(或不等式)求得离心率的值(或范围).
跟踪训练3 (1)(多选)(2023·聊城模拟)已知双曲线C:+=1(0<k<1),则下列结论正确的是( )
A.双曲线C的焦点在x轴上
B.双曲线C的焦距等于4
C.双曲线C的焦点到其渐近线的距离等于
D.双曲线C的离心率的取值范围为
(2)(2022·怀化模拟)已知F是双曲线C:-=1(a>0,b>0)的右焦点,过点F的直线l与双曲线C的一条渐近线垂直,垂足为A,且直线l与双曲线C的左支交于点B,若3|FA|=|AB|,则双曲线C的渐近线方程为________.
相关试卷
这是一份2024年高考数学第一轮复习专题训练81练第八章 §8.6 双曲线,共3页。试卷主要包含了已知F1,F2为双曲线C,F1,F2分别为双曲线C,已知双曲线C,已知F1,F2分别是双曲线C等内容,欢迎下载使用。
这是一份2024年高考数学第一轮复习专题训练第八章 §8.7 抛物线,共4页。
这是一份2024年高考数学第一轮复习专题训练第八章 §8.5 椭 圆,共5页。