2024年高考数学第一轮复习专题训练第八章 §8.10 圆锥曲线中求值与证明问题
展开§8.10 圆锥曲线中求值与证明问题
题型一 求值问题
例1 (12分)(2022·新高考全国Ⅰ)已知点A(2,1)在双曲线C:-=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.
(1)求l的斜率;[切入点:kAP+kAQ=0]
(2)若tan∠PAQ=2,求△PAQ的面积.[关键点:利用tan∠PAQ求kAP,kAQ]
思维升华 求值问题即是根据条件列出对应的方程,通过解方程求解.
跟踪训练1 在平面直角坐标系Oxy中,已知椭圆C:+=1(a>b>0)过点,焦距与长轴之比为,A,B分别是椭圆C的上、下顶点,M是椭圆C上异于A,B的一点.
(1)求椭圆C的方程;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)若点P在直线x-y+2=0上,且=3,求△PMA的面积;
(3)过点M作斜率为1的直线分别交椭圆C于另一点N,交y轴于点D,且点D在线段OA上(不包括端点O,A),直线NA与直线BM交于点P,求·的值.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
题型二 证明问题
例2 (2023·邵阳模拟)已知抛物线C的焦点F在x轴上,过F且垂直于x轴的直线交C于A(点A在第一象限),B两点,且|AB|=4.
(1)求C的标准方程;
(2)已知l为C的准线,过F的直线l1交C于M,N(M,N异于A,B)两点,证明:直线AM,BN和l相交于一点.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
思维升华 圆锥曲线证明问题的类型及求解策略
(1)圆锥曲线中的证明问题,主要有两类:一是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;二是证明直线与圆锥曲线中的一些数量关系(相等或不等).
(2)解决证明问题时,主要根据直线与圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关性质的应用、代数式的恒等变形以及必要的数值计算等进行证明.
跟踪训练2 (2022·宁德模拟)若A,B,C(0,1),D四点中恰有三点在椭圆T:+=1(a>b>0)上.
(1)求椭圆T的方程;
(2)动直线y=x+t(t≠0)与椭圆交于E,F两点,EF的中点为M,连接OM(其中O为坐标原点)交椭圆于P,Q两点,证明:|ME|·|MF|=|MP|·|MQ|.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
高考数学第一轮复习第九章 §9.9 圆锥曲线中求值与证明问题: 这是一份高考数学第一轮复习第九章 §9.9 圆锥曲线中求值与证明问题,共12页。试卷主要包含了记M的轨迹为C等内容,欢迎下载使用。
(新高考)高考数学一轮复习讲练测第8章§8.10圆锥曲线中求值与证明问题(含解析): 这是一份(新高考)高考数学一轮复习讲练测第8章§8.10圆锥曲线中求值与证明问题(含解析),共12页。
高考圆锥曲线题型专题分析——第十二讲 圆锥曲线中的求值、证明与探索性问题(全国通用): 这是一份高考圆锥曲线题型专题分析——第十二讲 圆锥曲线中的求值、证明与探索性问题(全国通用),文件包含第十二讲圆锥曲线中的求值证明与探索性问题教师版docx、第十二讲圆锥曲线中的求值证明与探索性问题原卷版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。