所属成套资源:2024年高考数学第一轮复习资料(附独立答案)
2024年高考数学第一轮复习专题训练第十章 §10.7 二项分布、超几何分布与正态分布
展开这是一份2024年高考数学第一轮复习专题训练第十章 §10.7 二项分布、超几何分布与正态分布,共6页。试卷主要包含了682 7;,5)=0等内容,欢迎下载使用。
§10.7 二项分布、超几何分布与正态分布
考试要求 1.理解二项分布、超几何分布的概念,能解决一些简单的实际问题.2.借助正态曲线了解正态分布的概念,并进行简单应用.
知识梳理
1.二项分布
(1)伯努利试验
只包含 可能结果的试验叫做伯努利试验;将一个伯努利试验独立地重复进行n次所组成的随机试验称为 .
(2)二项分布
一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p(0<p<1),用X表示事件A发生的次数,则X的分布列为P(X=k)= ,k=0,1,2,…,n.
如果随机变量X的分布列具有上式的形式,则称随机变量X服从二项分布,记作 .
(3)两点分布与二项分布的均值、方差
①若随机变量X服从两点分布,则E(X)= ,D(X)= .
②若X~B(n,p),则E(X)= ,D(X)= .
2.超几何分布
一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为
P(X=k)= ,k=m,m+1,m+2,…,r,其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布.
3.正态分布
(1)定义
若随机变量X的概率分布密度函数为f(x)=,x∈R,其中μ∈R,σ>0为参数,则称随机变量X服从正态分布,记为 .
(2)正态曲线的特点
①曲线是单峰的,它关于直线 对称;
②曲线在 处达到峰值;
③当|x|无限增大时,曲线无限接近x轴.
(3)3σ原则
①P(μ-σ≤X≤μ+σ)≈0.682 7;
②P(μ-2σ≤X≤μ+2σ)≈0.954 5;
③P(μ-3σ≤X≤μ+3σ)≈0.997 3.
(4)正态分布的均值与方差
若X~N(μ,σ2),则E(X)= ,D(X)= .
常用结论
1.“二项分布”与“超几何分布”的区别:有放回抽取问题对应二项分布,不放回抽取问题对应超几何分布,当总体容量很大时,超几何分布可近似为二项分布来处理.
2.超几何分布有时也记为 X~H(n,M,N),其均值E(X)=,
D(X)=.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)两点分布是二项分布当n=1时的特殊情形.( )
(2)若X表示n次重复抛掷1枚骰子出现点数是3的倍数的次数,则X服从二项分布.( )
(3)从装有3个红球、3个白球的盒中有放回地任取一个球,连取3次,则取到红球的个数X服从超几何分布.( )
(4)当μ取定值时,正态曲线的形状由σ确定,σ越小,曲线越“矮胖”.( )
教材改编题
1.如果某一批玉米种子中,每粒发芽的概率均为,那么播下5粒这样的种子,恰有2粒不发芽的概率是( )
A. B. C. D.
2.某班有48名同学,一次考试后的数学成绩服从正态分布N(80,102),则理论上在80分到90分的人数约是( )
A.32 B.16 C.8 D.20
3.在含有3件次品的10件产品中,任取4件,X表示取到的次品的个数,则P(X=1)=________.
题型一 二项分布
例1 (1)(2023·海口模拟)某班50名学生通过直播软件上网课,为了方便师生互动,直播屏幕分为1个大窗口和5个小窗口,大窗口始终显示老师讲课的画面,5个小窗口显示5名不同学生的画面.小窗口每5分钟切换一次,即再次从全班随机选择5名学生的画面显示,且每次切换相互独立.若一节课40分钟,则该班甲同学一节课在直播屏幕上出现的时间的均值是( )
A.10分钟 B.5分钟
C.4分钟 D.2分钟
听课记录:______________________________________________________________
________________________________________________________________________
(2)(2022·衡阳模拟)某地政府为鼓励大学生创业,制定了一系列优惠政策.已知创业项目甲成功的概率为,项目成功后可获得政府奖金20万元;创业项目乙成功的概率为P0(0<P0<1),项目成功后可获得政府奖金30万元.项目没有成功,则没有奖励,每个项目有且只有一次实施机会,两个项目的实施是否成功互不影响,项目成功后当地政府兑现奖励.
①大学毕业生张某选择创业项目甲,毕业生李某选择创业项目乙,记他们获得的奖金累计为X(单位:万元),若X≤30的概率为.求P0的大小;
②若两位大学毕业生都选择创业项目甲或创业项目乙进行创业,问:他们选择何种创业项目,累计得到的奖金的均值更大?
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
思维升华 二项分布问题的解题关键
(1)定型:
①在每一次试验中,事件发生的概率相同.
②各次试验中的事件是相互独立的.
③在每一次试验中,试验的结果只有两个,即发生与不发生.
(2)定参:确定二项分布中的两个参数n和p,即试验发生的次数和试验中事件发生的概率.
跟踪训练1 (1)已知随机变量X~B(n,p),E(X)=2,D(X)=,则P(X≥2)等于( )
A. B. C. D.
(2)某中学面向全校所有学生开展一项有关每天睡眠时间的问卷调查,调查结果显示,每天睡眠时间少于7小时的学生占40%,而每天睡眠时间不少于8小时的学生只有30%.现从所有问卷中随机抽取4份问卷进行回访(视频率为概率).
①求抽取到的问卷中至少有2份调查结果为睡眠时间不少于7小时的概率;
②记抽取到的问卷中调查结果为睡眠时间少于7小时的问卷份数为X,求X的分布列及均值E(X).
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
题型二 超几何分布
例2 2022年12月4日,神舟十四号载人飞船返回舱在东风着陆场成功着陆,航天员顺利出舱,神舟十四号载人飞行任务圆满完成.为纪念中国航天事业成就,发扬并传承中国航天精神,某校高一年级组织2 000名学生进行了航天知识竞赛(满分:100分)并进行记录,根据得分将数据分成7组:[20,30),[30,40),…,[80,90],绘制出如图所示的频率分布直方图.
(1)用频率估计概率,从该校随机抽取2名同学,求其中1人得分低于70分,另1人得分不低于80分的概率;
(2)从得分在[60,90]的学生中利用比例分配的分层随机抽样的方法选出8名学生,若从中选出3人参加有关航天知识演讲活动,求选出的3人中竞赛得分不低于70分的人数X的分布列及均值.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
思维升华 (1)超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:①考察对象分两类;②已知各类对象的个数;③从中抽取若干个个体,考查某类个体数X的分布列.
(2)超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其本质是古典概型.
跟踪训练2 为了适当疏导电价矛盾,保障电力供应,支持可再生能源发展,促进节能减排,某省推出了省内居民阶梯电价的计算标准:以一个年度为计费周期,月度滚动使用.第一阶梯:年用电量在2 160度以下(含2 160度),执行第一档电价0.565 3元/度;第二阶梯:年用电量在2 161度到4 200度内(含4 200度),超出2 160度的电量执行第二档电价0.615 3元/度;第三阶梯:年用电量在4 200度以上,超出4 200度的电量执行第三档电价0.865 3元/度.
某市的电力部门从本市的用户中随机抽取10户,统计其同一年度的用电情况,列表如下:
用户 编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
年用电量/度 | 1 000 | 1 260 | 1 400 | 1 824 | 2 180 | 2 423 | 2 815 | 3 325 | 4 411 | 4 600 |
(1)计算表中编号为10的用户该年应交的电费;
(2)现要在这10户中任意选取4户,对其用电情况进行进一步分析,求取到第二阶梯的户数的分布列.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
题型三 正态分布
例3 (1)(多选)(2023·哈尔滨模拟)某市有甲、乙两个工厂生产同一型号的汽车零件,零件的尺寸分别记为X,Y,已知X,Y均服从正态分布,X~N(μ1,σ),Y~N(μ2,σ),其正态曲线如图所示,则下列结论中正确的是( )
A.甲工厂生产零件尺寸的平均值等于乙工厂生产零件尺寸的平均值
B.甲工厂生产零件尺寸的平均值小于乙工厂生产零件尺寸的平均值
C.甲工厂生产零件尺寸的稳定性高于乙工厂生产零件尺寸的稳定性
D.甲工厂生产零件尺寸的稳定性低于乙工厂生产零件尺寸的稳定性
(2)(2022·合肥模拟)某市高三年级共有14 000人参加教学质量检测,学生的数学成绩ξ近似服从正态分布N(90,σ2)(试卷满分150分),且P(ξ≥100)=0.3,据此可以估计,这次检测数学成绩在80到90分之间的学生人数约为( )
A.2 800 B.4 200
C.5 600 D.7 000
听课记录:______________________________________________________________
________________________________________________________________________
思维升华 解决正态分布问题的三个关键点
(1)对称轴为x=μ.
(2)标准差为σ.
(3)分布区间.
利用对称性可求指定范围内的概率值;由μ,σ,分布区间的特征进行转化,使分布区间转化为3σ特殊区间,从而求出所求概率.注意只有在标准正态分布下对称轴才为x=0.
跟踪训练3 (1)(2022·新高考全国Ⅱ)已知随机变量X服从正态分布N(2,σ2),且P(2<X≤2.5)=0.36,则P(X>2.5)=________.
(2)(2022·安庆模拟)某中学开展学生数学素养测评活动,高一年级测评分值X近似服从正态分布,正态密度曲线如图①所示.为了调查参加测评的学生数学学习的方法与习惯差异,该中学决定在分数段[m,n)内抽取学生,并确定m=67,且P(m≤X≤n)=0.818 6.在某班用简单随机抽样的方法得到20名学生的分值分布茎叶图如图②所示.若该班抽取学生分数在分数段[m,n)内的人数为k,则k=________;这k名学生的平均分为________.
(附:P(μ-σ≤X≤μ+σ)≈0.682 7,P(μ-2σ≤X≤μ+2σ)≈0.954 5,P(μ-3σ≤X≤μ+3σ)≈
0.997 3)
相关试卷
这是一份2024年高考数学第一轮复习专题32 四大分布:两点分布、超几何分布、二项分布、正态分布(解析版),共30页。
这是一份2024年高考数学第一轮复习专题32 四大分布:两点分布、超几何分布、二项分布、正态分布(原卷版),共16页。
这是一份(新高考)高考数学一轮复习讲练测第10章§10.7二项分布、超几何分布与正态分布(含解析),共17页。试卷主要包含了682 7;,9,10,9)=P≈eq \f=0等内容,欢迎下载使用。