终身会员
搜索
    上传资料 赚现金
    第三章 §3.4 函数中的构造问题[培优课](教师版+学生课时教案+课时作业+配套PPT)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 课件
      第三章 §3.4 函数中的构造问题[培优课](课时配套ppt).pptx
    • 教案
      第三章 §3.4 函数中的构造问题[培优课](学生课时教案).docx
    • 练习
      第三章 §3.4 函数中的构造问题[培优课] (教师用书).docx
    • 练习
      第三章 §3.4 函数中的构造问题[培优课](课时课后练习).docx
    第三章 §3.4 函数中的构造问题[培优课](教师版+学生课时教案+课时作业+配套PPT)01
    第三章 §3.4 函数中的构造问题[培优课](教师版+学生课时教案+课时作业+配套PPT)02
    第三章 §3.4 函数中的构造问题[培优课](教师版+学生课时教案+课时作业+配套PPT)03
    第三章 §3.4 函数中的构造问题[培优课](教师版+学生课时教案+课时作业+配套PPT)04
    第三章 §3.4 函数中的构造问题[培优课](教师版+学生课时教案+课时作业+配套PPT)05
    第三章 §3.4 函数中的构造问题[培优课](教师版+学生课时教案+课时作业+配套PPT)06
    第三章 §3.4 函数中的构造问题[培优课](教师版+学生课时教案+课时作业+配套PPT)07
    第三章 §3.4 函数中的构造问题[培优课](教师版+学生课时教案+课时作业+配套PPT)08
    第三章 §3.4 函数中的构造问题[培优课](教师版+学生课时教案+课时作业+配套PPT)01
    第三章 §3.4 函数中的构造问题[培优课](教师版+学生课时教案+课时作业+配套PPT)01
    第三章 §3.4 函数中的构造问题[培优课](教师版+学生课时教案+课时作业+配套PPT)02
    第三章 §3.4 函数中的构造问题[培优课](教师版+学生课时教案+课时作业+配套PPT)03
    第三章 §3.4 函数中的构造问题[培优课](教师版+学生课时教案+课时作业+配套PPT)01
    还剩46页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第三章 §3.4 函数中的构造问题[培优课](教师版+学生课时教案+课时作业+配套PPT)

    展开
    这是一份第三章 §3.4 函数中的构造问题[培优课](教师版+学生课时教案+课时作业+配套PPT),文件包含第三章§34函数中的构造问题培优课课时配套pptpptx、第三章§34函数中的构造问题培优课学生课时教案docx、第三章§34函数中的构造问题培优课教师用书docx、第三章§34函数中的构造问题培优课课时课后练习docx等4份课件配套教学资源,其中PPT共54页, 欢迎下载使用。

    函数中的构造问题是高考考查的一个热点内容,经常以客观题出现,同构法构造函数也在解答题中出现,通过已知等式或不等式的结构特征,构造新函数,解决比较大小、解不等式、恒成立等问题.
    命题点1 利用f(x)与x构造
    例1 (2023·苏州质检)已知函数f(x)在R上满足f(x)=f(-x),且当x∈(-∞,0]时,f(x)+xf′(x)<0成立,若a=20.6·f(20.6),b=ln 2·f(ln 2),c= ,则a,b,c的大小关系是A.a>b>c B.c>b>aC.a>c>b D.c>a>b
    因为函数f(x)在R上满足f(x)=f(-x),所以函数f(x)是偶函数,令g(x)=xf(x),则g(x)是奇函数,g′(x)=f(x)+x·f′(x),由题意知,当x∈(-∞,0]时,f(x)+xf′(x)<0成立,所以g(x)在(-∞,0]上单调递减,又g(x)是奇函数,所以g(x)在R上单调递减,
    (1)出现nf(x)+xf′(x)形式,构造函数F(x)=xnf(x);(2)出现xf′(x)-nf(x)形式,构造函数F(x)= .
    跟踪训练1 (2023·重庆模拟)已知定义域为{x|x≠0}的偶函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>2f(x)且f(1)=0,则不等式f(x)<0的解集是A.(-∞,1) B.(-1,1)C.(-∞,0)∪(0,1) D.(-1,0)∪(0,1)
    又对任意正实数x满足xf′(x)>2f(x),即当x>0时,g′(x)>0,所以g(x)在(0,+∞)上单调递增,
    所以g(x)也为偶函数,故g(x)在(-∞,0)上单调递减,
    所以x∈(-1,0)∪(0,1).
    命题点2 利用f(x)与ex构造例2 (2022·蚌埠质检)已知可导函数f(x)的导函数为f′(x),若对任意的x∈R,都有f′(x)-f(x)<1,且f(0)=2 022,则不等式f(x)+1>2 023ex的解集为A.(-∞,0) B.(0,+∞)C. D.(-∞,1)
    因为f′(x)-f(x)<1,所以F′(x)<0恒成立,
    所以F(x)>F(0),解得x<0.
    (1)出现f′(x)+nf(x)形式,构造函数F(x)=enxf(x);(2)出现f′(x)-nf(x)形式,构造函数F(x)= .
    跟踪训练2 (2023·南昌模拟)已知定义在R上的函数f(x)满足f(x)+f′(x)>0,且有f(3)=3,则f(x)>3e3-x的解集为___________.
    设F(x)=f(x)·ex,则F′(x)=f′(x)·ex+f(x)·ex=ex[f(x)+f′(x)]>0,∴F(x)在R上单调递增.又f(3)=3,则F(3)=f(3)·e3=3e3.∵f(x)>3e3-x等价于f(x)·ex>3e3,即F(x)>F(3),∴x>3,即所求不等式的解集为(3,+∞).
    命题点3 利用f(x)与sin x,cs x构造
    即g(x)也是偶函数.
    函数f(x)与sin x,cs x相结合构造可导函数的几种常见形式F(x)=f(x)sin x,F′(x)=f′(x)sin x+f(x)cs x;
    F(x)=f(x)cs x,
    F′(x)=f′(x)cs x-f(x)sin x;
    设φ(x)=f(x)·sin x,则φ′(x)=f′(x)sin x+f(x)cs x,∴x∈(0,+∞)时,φ′(x)<0,即φ(x)在(0,+∞)上单调递减,又f(x)为奇函数,∴φ(x)为偶函数,
    例4 (1)(2020·全国Ⅰ)若2a+lg2a=4b+2lg4b,则A.a>2b B.a<2bC.a>b2 D.a由指数和对数的运算性质可得2a+lg2a=4b+2lg4b=22b+lg2b.令f(x)=2x+lg2x,则f(x)在(0,+∞)上单调递增,又∵22b+lg2b<22b+lg2b+1=22b+lg22b,∴2a+lg2a<22b+lg22b,即f(a)(2)(2023·武汉模拟)已知a>0,若在(1,+∞)上存在x使得不等式ex-x≤xa-aln x成立,则a的最小值为_____.
    ∵xa= =ealn x,∴不等式即为ex-x≤ealn x-aln x,∵a>0且x>1,∴aln x>0,设y=ex-x,则y′=ex-1>0,故y=ex-x在(1,+∞)上单调递增,
    当x∈(e,+∞)时,f′(x)>0,∴f(x)在(1,e)上单调递减,在(e,+∞)上单调递增,∴f(x)min=f(e)=e,∴a≥e.故a的最小值为e.
    指对同构,经常使用的变换形式有两种,一种是将x变成ln ex然后构造函数;另一种是将x变成eln x然后构造函数.
    跟踪训练4 (1)(多选)(2023·泰州模拟)已知α,β均为锐角,且α+β->sin β-cs α,则A.sin α>sin β B.cs α>cs βC.cs αcs β
    ∴cs βcs α.
    (2)(2023·南京模拟)设a,b都为正数,e为自然对数的底数,若aeae   B.b>ea   C.ab由已知aea0,则bln b>0,则b>1.当x>1时,f′(x)=ln x+1>0,则f(x)在(1,+∞)上单调递增,所以eaA.a则有f(3)2.若2x-2y<3-x-3-y,则A.ln(y-x+1)>0 B.ln(y-x+1)<0C.ln|x-y|>0 D.ln|x-y|<0
    由2x-2y<3-x-3-y,得2x-3-x<2y-3-y,令f(t)=2t-3-t,∵y=2t为R上的增函数,y=3-t为R上的减函数,∴f(t)为R上的增函数,∴x0,∴y-x+1>1,∴ln(y-x+1)>0,则A正确,B错误;∵|x-y|与1的大小不确定,故C,D无法确定.
    3.(2023·济南模拟)已知f(x)是定义在R上的偶函数,f′(x)是f(x)的导函数,当x≥0时,f′(x)-2x>0,且f(1)=3,则f(x)>x2+2的解集是A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(0,1)D.(-∞,-1)∪(0,1)
    令g(x)=f(x)-x2,因为f(x)是偶函数,则g(-x)=f(-x)-(-x)2=g(x),所以函数g(x)也是偶函数,g′(x)=f′(x)-2x,因为当x≥0时,f′(x)-2x>0,所以当x≥0时,g′(x)=f′(x)-2x>0,所以函数g(x)在(0,+∞)上单调递增,
    不等式f(x)>x2+2即为不等式g(x)>2,由f(1)=3,得g(1)=2,所以g(x)>g(1),所以|x|>1,解得x>1或x<-1,所以f(x)>x2+2的解集是(-∞,-1)∪(1,+∞).
    4.(2023·常州模拟)已知函数y=f(x-1)的图象关于点(1,0)对称,且当x>0时,f′(x)sin x+f(x)cs x>0,则下列说法正确的是
    由f(x-1)的图象关于点(1,0)对称可知,f(x)的图象关于点(0,0)对称,则f(x)为奇函数,令g(x)=f(x)sin x,则g(x)为偶函数, 又x>0时,f′(x)sin x+f(x)cs x>0,即[f(x)sin x]′>0,则g(x)在(0,+∞)上单调递增,
    令函数g(x)=ln x·f(x),
    所以g(x)在(0,+∞)上单调递增,又g(1)=0,
    由题意可知,m>0,n>0,则ln m-m+2m2=ln n-n+2e2n2+1>ln(en)-en+2e2n2,构造函数f(x)=2x2-x+ln x,其中x>0,
    故A对,B错,无法判断C,D选项的正误.
    7.已知定义在R上的函数f(x)的导函数为f′(x),且f(x)f(1),f(2)>ef(1)B.ef(2)>f(1),f(2)ef(1)D.ef(2)由题意可知,函数f(x)在R上单调递减,f(x)+f′(x)<0,f′(x)-f(x)>0.构造函数h(x)=exf(x),定义域为R,则h′(x)=exf(x)+f′(x)ex=ex[f(x)+f′(x)]<0,所以h(x)在R上单调递减,所以h(2)所以g(x)在R上单调递增,
    即f(2)>ef(1),故D错误.
    由题意得lg2m+2m=2n+1+n,lg2m+2m=2×2n+n=lg22n+2×2n,
    所以g(x)在(0,+∞)上单调递增,因为g(m)=g(2n),
    9.已知f(x)的定义域为(0,+∞),f′(x)为f(x)的导函数,且满足f(x)<-xf′(x),则不等式f(x+1)>(x-1)f(x2-1)的解集是___________.
    根据题意,构造函数y=xf(x),x∈(0,+∞),则y′=f(x)+xf′(x)<0,所以函数y=xf(x)在(0,+∞)上单调递减.又因为f(x+1)>(x-1)f(x2-1),所以(x+1)f(x+1)>(x2-1)f(x2-1),所以02,所以不等式f(x+1)>(x-1)f(x2-1)的解集是(2,+∞).
    10.(2022·渭南模拟)设实数λ>0,对任意的x>1,不等式λeλx≥ln x恒成立,则λ的取值范围为_______.
    由题意,得eλx·λx≥xln x=eln x·ln x,令f(t)=t·et,t∈(0,+∞),则f′(t)=(t+1)·et>0,所以f(t)在(0,+∞)上单调递增,又f(λx)≥f(ln x),即当x∈(1,+∞)时,λx≥ln x,
    相关课件

    第七章 §7.2 球的切、接问题[培优课](教师版+学生课时教案+课时作业+配套PPT): 这是一份第七章 §7.2 球的切、接问题[培优课](教师版+学生课时教案+课时作业+配套PPT),文件包含第七章§72球的切接问题培优课课时配套pptpptx、第七章§72球的切接问题培优课学生课时教案docx、第七章§72球的切接问题培优课教师用书docx、第七章§72球的切接问题培优课课时课后练习docx等4份课件配套教学资源,其中PPT共60页, 欢迎下载使用。

    第五章 §5.4 平面向量的综合应用[培优课](教师版+学生课时教案+课时作业+配套PPT): 这是一份第五章 §5.4 平面向量的综合应用[培优课](教师版+学生课时教案+课时作业+配套PPT),文件包含第五章§54平面向量的综合应用培优课课时配套pptpptx、第五章§54平面向量的综合应用培优课学生课时教案docx、第五章§54平面向量的综合应用培优课课时课后练习docx、第五章§54平面向量的综合应用培优课教师用书docx等4份课件配套教学资源,其中PPT共58页, 欢迎下载使用。

    第四章 §4.5 三角函数的图象与性质(教师版+学生课时教案+课时作业+配套PPT): 这是一份第四章 §4.5 三角函数的图象与性质(教师版+学生课时教案+课时作业+配套PPT),文件包含第四章§45三角函数的图象与性质课时配套pptpptx、第四章§45三角函数的图象与性质学生课时教案docx、第四章§45三角函数的图象与性质课时课后练习docx、第四章§45三角函数的图象与性质教师用书docx等4份课件配套教学资源,其中PPT共60页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map