还剩40页未读,
继续阅读
所属成套资源:新教材适用2023_2024学年高中数学新人教A版选择性必修第二册全册课件(21份)
成套系列资料,整套一键下载
- 新教材适用2023_2024学年高中数学第5章一元函数的导数及其应用5.2导数的运算5.2.2导数的四则运算法则5.2.3简单复合函数的导数课件新人教A版选择性必修第二册 课件 0 次下载
- 新教材适用2023_2024学年高中数学第5章一元函数的导数及其应用5.3导数在研究函数中的应用5.3.1函数的单调性课件新人教A版选择性必修第二册 课件 0 次下载
- 新教材适用2023_2024学年高中数学第5章一元函数的导数及其应用5.3导数在研究函数中的应用5.3.2函数的极值与最大小值第1课时函数的极值课件新人教A版选择性必修第二册 课件 0 次下载
- 新教材适用2023_2024学年高中数学第5章一元函数的导数及其应用5.3导数在研究函数中的应用5.3.2函数的极值与最大小值第2课时函数的最大小值课件新人教A版选择性必修第二册 课件 0 次下载
- 新教材适用2023_2024学年高中数学第5章一元函数的导数及其应用5.3导数在研究函数中的应用5.3.3利用导数解决与函数有关的问题课件新人教A版选择性必修第二册 课件 0 次下载
新教材适用2023_2024学年高中数学第5章一元函数的导数及其应用章末整合提升课件新人教A版选择性必修第二册
展开这是一份新教材适用2023_2024学年高中数学第5章一元函数的导数及其应用章末整合提升课件新人教A版选择性必修第二册,共48页。
第五章 一元函数的导数及其应用章末整合提升知识体系构建核心知识归纳1.导数的几何意义的应用:利用导数的几何意义可以求出曲线上任意一点处的切线方程y-y0=f ′(x0)(x-x0),明确“过点P(x0,y0)的曲线y=f (x)的切线方程”与“在点P(x0,y0)处的曲线y=f (x)的切线方程”的异同点.2.围绕着切点有三个等量关系:切点(x0,y0),则k=f ′(x0),y0=f(x0),(x0,y0)满足切线方程,在求解参数问题中经常用到.3.利用导数确定参数的取值范围时,要充分利用f(x)与其导数f′(x)之间的对应关系,然后结合函数的单调性等知识求解.求解参数范围的步骤为:(1)对含参数的函数f(x)求导,得到f ′(x);(2)若函数f(x)在(a,b)上单调递增,则f′(x)≥0恒成立;若函数f(x)在(a,b)上单调递减,则f ′(x)≤0恒成立,得到关于参数的不等式,解出参数范围;(3)验证参数范围中取等号时,是否恒有f′(x)=0.若f′(x)=0恒成立,则函数f(x)在(a,b)上为常函数,舍去此参数值.4.求连续函数f (x)在区间[a,b]上的最值的方法(1)若函数f (x)在区间[a,b]上单调递增或递减,则f (a)与f (b)一个为最大值,一个为最小值;(2)若函数f (x)在闭区间[a,b]内有极值,则要先求出[a,b]上的极值,再与f (a),f(b)比较,最大的是最大值,最小的是最小值,可列表完成.5.已知函数的极值(最值)情况求参数的值(取值范围)的方法根据极值和最值的关系,与最值有关的问题一般可以转化为极值问题.已知f (x)在某点x0处有极值,求参数的值(取值范围)时,应逆向考虑,可先将参数当作常数,按照求极值的一般方法求解,再依据极值与导数的关系,列等式(不等式)求解.6.解决优化问题的步骤(1)要分析问题中各个数量之间的关系,建立适当的函数模型,并确定函数的定义域.(2)要通过研究相应函数的性质,如单调性、极值与最值,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具.(3)验证数学问题的解是否满足实际意义.要点专项突破y=3x-2C (2023·山东威海高三检测)已知函数f(x)=x3+ax2+bx+c,过曲线y=f(x)上的点P(1,f(1))的切线方程为y=3x+1,y=f(x)在x=-2时有极值.(1)求f(x)的解析式;(2)求y=f(x)在[-3,1]上的单调区间和最大值.[解析] (1)f ′(x)=3x2+2ax+b,f ′(1)=3+2a+b,过曲线上P点的切线方程为y-f(1)=(3+2a+b)(x-1),即y-(a+b+c+1)=(3+2a+b)(x-1),整理得,y=(3+2a+b)x-a+c-2.已知该切线方程为y=3x+1, 设函数f(x)=x2+aln(1+x)有两个极值点x1,x2,且x1
相关资料
更多