人教版九年级数学上册 第25章 概率初步 单元测试题
展开1.某奥体中心的构造如图所示,其东、西面各有一个入口A、B,南面为出口C,北面分别有两个出口D、E.聪聪若任选一个入口进入,再任选一个出口离开,那么他从入口A进入并从北面出口离开的概率为( )
A. B. C. D.
2.下列说法正确的是( )
A.若你在上一个路口遇到绿灯,则在下一路口必遇到红灯
B.某篮球运动员2次罚球,投中一个,则可断定他罚球命中的概率为50%
C.明天我市会下雨是随机事件
D.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖
3.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于5的概率是( )
A.eq \f(1,2) B.eq \f(1,3) C.eq \f(1,4) D.eq \f(1,5)
4.为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼,如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的可估计为( )
A.3000条 B.2200条 C.1200条 D.600条
5.一只小鸟自由地在空中飞行,然后随意地落在如图所示的某个方格中(每个方格除颜色外其余完全一样),那么小鸟停在黑色方格中的概率是( )
A.eq \f(1,2) B.eq \f(1,3) C.eq \f(1,4) D.eq \f(1,5)
6.如图,甲为四等分数字转盘,乙为三等分数字转盘,同时自由转动两个转盘,当转盘停止转动后(若指针指在边界处则重转),两个转盘指针指向数字之和不超过4的概率是( )
A.eq \f(5,6) B.eq \f(1,3) C.eq \f(2,3) D.eq \f(1,2)
7. 如图,正方形ABCD内接于⊙O,⊙O的直径为分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是( )
A. B. C. D.
8.如图是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字,如果同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,则指针指向的数字和为偶数的概率是( )
A.eq \f(1,2) B.eq \f(2,9) C.eq \f(4,9) D.eq \f(1,3)
9.同时抛掷A,B两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),朝上一面的数字分别为x,y并以此确定点P(x,y),点P落在抛物线y=-x2+3x上的概率为( )
A.eq \f(1,18) B.eq \f(1,12) C.eq \f(1,9) D.eq \f(1,6)
10. 从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M:“这个四边形是等腰梯形” .下列判断正确的是( )
A.事件M是不可能事件B.事件M是必然事件
C.事件M发生的概率为 eq \f(1,5) D.事件M发生的概率为 eq \f(2,5)
二、填空题
11.同时抛掷两枚硬币正面均朝上的概率为____ .
12.在一个木制的棱长为3的正方体的表面涂上颜色,将它的棱三等分,然后从等分点把正方体锯开,得到27个棱长为l的小正方体,将这些小正方体充分混合后,装入口袋,从这个口袋中任意取出一个小正方体,则这个小正方体的表面恰好涂有两面颜色的概率是 .
13.某电视台综艺节目接到热线电话500个,现从中抽取“幸运观众”10名,小明打通了一次热线电话,他成为“幸运观众”的概率是___.
14.一个均匀的立方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是___.
15.从“线段、等边三角形、圆、矩形、正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是___ _.
16.在一个不透明的袋子里装有黄色、白色乒乓球共40个,除颜色外其他完全相同.小明从这个袋子中随机摸出一球,放回.通过多次摸球试验后发现,摸到黄色球的频率稳定在15%附近,则袋中黄色球可能有____个.
三、解答题
17.小英与她的父亲、母亲计划清明小长假外出旅游,初步选择了苏州、常州、上海、南京四个城市,由于时间仓促,他们只能去其中一个城市,到底去哪一个城市三个人意见不统一,在这种情况下,小英父亲建议,用小英学过的摸球游戏来决定,规则如下:
①在一个不透明的袋子中装一个红球(苏州)、一个白球(常州)、一个黄球(上海)和一个黑球(南京),这四个球除颜色不同外,其余完全相同;
②小英父亲先将袋中球摇匀,让小英从袋中随机摸出一球,父亲记录下其颜色,并将这个球放回袋中摇匀,然后让小英母亲从袋中随机摸出一球,父亲记录下它的颜色;
③若两人所摸出球的颜色相同,则去该球所表示的城市旅游,否则,前面的记录作废,按规则②重新摸球,直到两人所摸出球的颜色相同为止.
按照上面的规则,请你解答下列问题:
(1)已知小英的理想旅游城市是常州,小英和母亲随机各摸球一次,,请用画树状图或列表法求两人均摸出白球的概率是多少?
(2)已知小英母亲的理想旅游城市是上海,小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是多少?
18.一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球、8个黑球、7个红球.
(1)求从袋中摸出一个球是黄球的概率;
(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是eq \f(1,3),求从袋中取出黑球的个数.
19、某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.
(1)求转动一次转盘获得购物券的概率;
(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?
答案
ACCAB DACAB
11、 12、 EQ \F(4,9) 13 _eq \f(1,50) 14_eq \f(1,3) 15 eq \f(4,5) 16 6
17、答案:解:(1)画树状图得:
18 解:(1)eq \f(1,4) (2)设取出x个黑球,由题意得eq \f(8-x,20-x)=eq \f(1,3),解得x=2.经检验x=2是方程的解且符合题意,即从袋中取出黑球的个数为2
········· 2分
∵共有16种等可能的结果,均摸出白球的只有1种情况,·········3分
∴小英和母亲随机各摸球一次,均摸出白球的概率是:;·········5分
(2)由(1)得:共有16种等可能的结果,至少有一人摸出黄球的有7种情况,··6分
∴小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是:.·········8分
19解:(1)∵转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,∴P(转动一次转盘获得购物券)=eq \f(10,20)=eq \f(1,2) (2)∵P(红色)=eq \f(1,20),P(黄色)=eq \f(3,20),P(绿色)=eq \f(6,20)=eq \f(3,10),∴200×eq \f(1,20)+100×eq \f(3,20)+50×eq \f(6,20)=40(元),∵40元>30元,∴选择转转盘对顾客更合算
人教版九年级上册数学第25章《概率初步》单元练习卷: 这是一份人教版九年级上册数学第25章《概率初步》单元练习卷,共55页。试卷主要包含了填空题,选择题,解答题等内容,欢迎下载使用。
初中数学人教版九年级上册25.1.2 概率单元测试达标测试: 这是一份初中数学人教版九年级上册25.1.2 概率单元测试达标测试,共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学人教版九年级上册第二十五章 概率初步综合与测试课后练习题: 这是一份初中数学人教版九年级上册第二十五章 概率初步综合与测试课后练习题,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。