|试卷下载
终身会员
搜索
    上传资料 赚现金
    第07讲 利用导数研究函数的零点问题(1类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 教师
      第07讲 利用导数研究函数的零点问题(教师版).docx
    • 学生
      第07讲 利用导数研究函数的零点问题(学生版).docx
    第07讲 利用导数研究函数的零点问题(1类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考)01
    第07讲 利用导数研究函数的零点问题(1类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考)02
    第07讲 利用导数研究函数的零点问题(1类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考)03
    第07讲 利用导数研究函数的零点问题(1类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考)01
    第07讲 利用导数研究函数的零点问题(1类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考)02
    第07讲 利用导数研究函数的零点问题(1类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考)03
    还剩67页未读, 继续阅读
    下载需要25学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第07讲 利用导数研究函数的零点问题(1类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考)

    展开
    这是一份第07讲 利用导数研究函数的零点问题(1类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考),共4页。试卷主要包含了 4年真题考点分布, 命题规律及备考策略等内容,欢迎下载使用。

    (核心考点精讲精练)
    1. 4年真题考点分布
    2. 命题规律及备考策略
    【命题规律】本节内容是新高考卷的必考内容,设题稳定,难度较大,分值为12分
    【备考策略】1能用导数证明函数的单调性
    2能结合零点的定义及零点存在性定理解决零点问题
    【命题预测】导数的综合应用是高考考查的重点内容,也是高考压轴题之一近几年高考命题的趋势,是稳中求变、变中求新、新中求活,纵观近几年的高考题,导数的综合应用题考查多个核心素养以及综合应用能力,有一定的难度,一般放在解答题的最后位置,对数学抽象、数学运算、逻辑推理等多个数学学科的核心素养都有较深入的考查,需综合复习
    知识讲解
    利用导数研究函数零点的方法
    (1)通过最值(极值)判断零点个数的方法
    借助导数研究函数的单调性、极值后,通过极值的正负,函数单调性判断函数图象走势,从而判断零点个数或者通过零点个数求参数范围.
    (2)数形结合法求解零点
    对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性,画出草图数形结合确定其中参数的范围.
    (3)构造函数法研究函数零点
    ①根据条件构造某个函数,利用导数确定函数的单调区间及极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求解.
    ②解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法.
    考点一、利用导数研究函数的零点问题
    1.(2023·全国·统考高考真题)函数存在3个零点,则的取值范围是( )
    A.B.C.D.
    2.(2020·全国·统考高考真题)已知函数.
    (1)当时,讨论的单调性;
    (2)若有两个零点,求的取值范围.
    3.(2020·全国·统考高考真题)已知函数.
    (1)讨论的单调性;
    (2)若有三个零点,求的取值范围.
    4.(2022·全国·统考高考真题)已知函数
    (1)当时,求曲线在点处的切线方程;
    (2)若在区间各恰有一个零点,求a的取值范围.
    5.(2022·全国·统考高考真题)已知函数.
    (1)若,求a的取值范围;
    (2)证明:若有两个零点,则.
    6.(2022·全国·统考高考真题)已知函数.
    (1)当时,求的最大值;
    (2)若恰有一个零点,求a的取值范围.
    1.(2023·广东佛山·校考模拟预测)已知函数.
    (1)求函数在区间上的最小值;
    (2)判断函数的零点个数,并证明.
    2.(2023·浙江·校联考模拟预测)已知函数.
    (1)若,证明:当时,;
    (2)讨论函数在上零点个数.
    3.(2023·浙江·统考二模)设函数.
    (1)证明:当时,;
    (2)记,若有且仅有2个零点,求的值.
    4.(2023·江苏苏州·模拟预测)已知函数.
    (1)若在上单调递增,求实数的取值范围;
    (2)当时,求证:在上有唯一零点.
    5.(2023·江苏无锡·江苏省天一中学校考模拟预测)已知函数,.
    (1)当时,证明:在上恒成立;
    (2)判断函数的零点个数.
    【基础过关】
    1.(2023·重庆酉阳·重庆市酉阳第一中学校校考一模)函数.
    (1)讨论函数的极值;
    (2)当时,求函数的零点个数.
    2.(2023·福建宁德·校考模拟预测)已知
    (1)当时,求的单调性;
    (2)讨论的零点个数.
    3.(2023·陕西商洛·统考一模)已知函数,其中e为自然对数的底数.
    (1)求曲线在处的切线方程;
    (2)证明:在上有两个零点.
    4.(2023·广西·统考模拟预测)已知函数.
    (1)当时,讨论的单调性;
    (2)若有两个不同的零点,求的取值范围.
    5.(2023·四川绵阳·统考一模)已知函数().
    (1)讨论函数的单调性;
    (2)若函数在上恰有两个零点,求函数在上的最小值.
    6.(2023·云南·统考模拟预测)已知函数在点处的切线l与直线垂直.
    (1)求切线l的方程;
    (2)判断在上零点的个数,并说明理由.
    7.(2023·甘肃兰州·校考模拟预测)已知函数.
    (1)若是的极值点,求的值;
    (2)求函数的单调区间;
    (3)若函数在上有且仅有个零点,求的取值范围.
    8.(2023·辽宁沈阳·统考一模)已知,.
    (1)讨论的单调性;
    (2)若有两个零点,求a的取值范围.
    9.(2023·广东东莞·统考模拟预测)已知函数.
    (1)当时,讨论函数的单调性;
    (2)若函数有两个不同的零点,求的取值范围.
    10.(2023·陕西西安·校联考模拟预测)已知函数(自然对数的底数)在点处的切线方程为.
    (1)求,的值;
    (2)求证:函数在区间内有唯一零点.
    【能力提升】
    1.(2023·广东广州·统考三模)已知函数,.
    (1)求函数的单调区间;
    (2)讨论函数的零点个数.
    2.(2023·江苏无锡·江苏省天一中学校考模拟预测)已知函数,.
    (1)当时,证明:在上恒成立;
    (2)判断函数的零点个数.
    3.(2023·陕西咸阳·武功县普集高级中学校考模拟预测)已知.
    (1)讨论函数的单调性;
    (2)当时,判定函数零点的个数,并说明理由.
    4.(2023·安徽合肥·合肥一六八中学校考模拟预测)已知函数,其中.
    (1)若时,有极值,求的值;
    (2)设,讨论的零点个数.
    5.(2023·湖北·荆门市龙泉中学校联考模拟预测)设函数,.
    (1)若函数在处的切线的斜率为.
    ①求实数的值;
    ②求证:存在唯一极小值点且.
    (2)当时,若在上存在零点,求实数的取值范围.
    6.(2023·北京海淀·北航实验学校校考三模)已知函数;
    (1)当时,求曲线在点处的切线方程;
    (2)若正数a使得对恒成立.求a的取值范围;
    (3)设函数,讨论其在定义域内的零点个数.
    7.(2023·广东东莞·校联考模拟预测)已知函数.
    (1)当时,讨论函数的单调性;
    (2)当时,证明:对任意的,;
    (3)讨论函数在上零点的个数.
    8.(2023·广东深圳·深圳市高级中学校考模拟预测)(1)当时,求证:.
    (2)已知函数有唯一零点,求证:且.
    9.(2023·福建福州·福建省福州第一中学校考三模)已知函数.
    (1)讨论函数的单调性;
    (2)若函数有两个零点,,且,求证:(其中是自然对数的底数).
    10.(2023·河北·校联考三模)已知函数.
    (1)当时,讨论函数的单调性;
    (2)若为函数的导函数,有两个零点.
    (ⅰ)求实数的取值范围;
    (ⅱ)证明:.
    【真题感知】
    一、多选题
    1.(2022·全国·统考高考真题)已知函数,则( )
    A.有两个极值点B.有三个零点
    C.点是曲线的对称中心D.直线是曲线的切线
    二、填空题
    2.(2021·北京·统考高考真题)已知函数,给出下列四个结论:
    ①若,恰 有2个零点;
    ②存在负数,使得恰有1个零点;
    ③存在负数,使得恰有3个零点;
    ④存在正数,使得恰有3个零点.
    其中所有正确结论的序号是 .
    三、解答题
    3.(全国·高考真题)已知函数,为的导数.证明:
    (1)在区间存在唯一极大值点;
    (2)有且仅有2个零点.
    4.(全国·高考真题)已知函数f(x)=2sinx-xcsx-x,f′(x)为f(x)的导数.
    (1)证明:f′(x)在区间(0,π)存在唯一零点;
    (2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.
    5.(2020·全国·统考高考真题)设函数,曲线在点(,f())处的切线与y轴垂直.
    (1)求b.
    (2)若有一个绝对值不大于1的零点,证明:所有零点的绝对值都不大于1.
    6.(2021·浙江·统考高考真题)设a,b为实数,且,函数
    (1)求函数的单调区间;
    (2)若对任意,函数有两个不同的零点,求a的取值范围;
    (3)当时,证明:对任意,函数有两个不同的零点,满足.
    (注:是自然对数的底数)
    7.(2020·浙江·统考高考真题)已知,函数,其中e=2.71828…为自然对数的底数.
    (Ⅰ)证明:函数在上有唯一零点;
    (Ⅱ)记x0为函数在上的零点,证明:
    (ⅰ);
    (ⅱ).4年考情
    考题示例
    考点分析
    关联考点
    2023年新Ⅱ卷,第22题,12分
    利用导数研究函数的零点
    利用导数求函数的单调区间 (不含参)
    利用导数研究不等式恒成立问题
    根据极值点求参数
    2022年新I卷,第10题,5分
    利用导数研究函数的零点
    求在曲线上一点处的切线方程 (斜率)
    求已知函数的极值点
    2021年新Ⅱ卷,第22题,12分
    利用导数研究函数的零点
    含参分类讨论求函数的单调区间
    相关试卷

    第07讲 利用导数研究双变量问题(讲+练)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考): 这是一份第07讲 利用导数研究双变量问题(讲+练)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考),文件包含第07讲利用导数研究双变量问题精讲+精练原卷版docx、第07讲利用导数研究双变量问题精讲+精练解析版docx等2份试卷配套教学资源,其中试卷共59页, 欢迎下载使用。

    第06讲 利用导数研究函数的零点(方程的根)(讲+练)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考): 这是一份第06讲 利用导数研究函数的零点(方程的根)(讲+练)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考),文件包含第06讲利用导数研究函数的零点方程的根精讲+精练原卷版docx、第06讲利用导数研究函数的零点方程的根精讲+精练解析版docx等2份试卷配套教学资源,其中试卷共68页, 欢迎下载使用。

    第09讲 利用导数研究双变量问题(1类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考): 这是一份第09讲 利用导数研究双变量问题(1类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考),共10页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        第07讲 利用导数研究函数的零点问题(1类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map