|试卷下载
终身会员
搜索
    上传资料 赚现金
    专题14.5 解题技巧专题:特殊的因式分解法之五大类型-【学霸满分】2023-2024学年八年级数学上册重难点专题提优训练(人教版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题14.5 解题技巧专题:特殊的因式分解法之五大类型(原卷版).docx
    • 解析
      专题14.5 解题技巧专题:特殊的因式分解法之五大类型(解析版).docx
    专题14.5 解题技巧专题:特殊的因式分解法之五大类型-【学霸满分】2023-2024学年八年级数学上册重难点专题提优训练(人教版)01
    专题14.5 解题技巧专题:特殊的因式分解法之五大类型-【学霸满分】2023-2024学年八年级数学上册重难点专题提优训练(人教版)02
    专题14.5 解题技巧专题:特殊的因式分解法之五大类型-【学霸满分】2023-2024学年八年级数学上册重难点专题提优训练(人教版)03
    专题14.5 解题技巧专题:特殊的因式分解法之五大类型-【学霸满分】2023-2024学年八年级数学上册重难点专题提优训练(人教版)01
    专题14.5 解题技巧专题:特殊的因式分解法之五大类型-【学霸满分】2023-2024学年八年级数学上册重难点专题提优训练(人教版)02
    专题14.5 解题技巧专题:特殊的因式分解法之五大类型-【学霸满分】2023-2024学年八年级数学上册重难点专题提优训练(人教版)03
    还剩9页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题14.5 解题技巧专题:特殊的因式分解法之五大类型-【学霸满分】2023-2024学年八年级数学上册重难点专题提优训练(人教版)

    展开
    这是一份专题14.5 解题技巧专题:特殊的因式分解法之五大类型-【学霸满分】2023-2024学年八年级数学上册重难点专题提优训练(人教版),共5页。

    目录
    TOC \ "1-3" \h \u \l "_Tc4246" 【典型例题】 PAGEREF _Tc4246 \h 1
    \l "_Tc6908" 【类型一 提多项式的公因式的因式分解法】 PAGEREF _Tc6908 \h 1
    \l "_Tc11039" 【类型二 综合利用提公因式法和公式法因式分解】 PAGEREF _Tc11039 \h 2
    \l "_Tc18915" 【类型三 十字相乘法因式分解】 PAGEREF _Tc18915 \h 4
    \l "_Tc10362" 【类型四 分组分解法因式分解】 PAGEREF _Tc10362 \h 9
    \l "_Tc8895" 【类型五 因式分解的应用】 PAGEREF _Tc8895 \h 14
    \l "_Tc24002" 【过关检测】 PAGEREF _Tc24002 \h 17
    【典型例题】
    【类型一 提多项式的公因式的因式分解法】
    例题:(2023秋·新疆阿克苏·八年级统考期末)分解因式:.
    【答案】
    【分析】提公因式分解因式即可.
    【详解】解:
    故答案为:.
    【点睛】本题考查利用提公因式分解因式等知识,是重要考点,难度较易,掌握相关知识是解题关键.
    【变式训练】
    1.(2023秋·湖北孝感·八年级统考期末)分解因式:.
    【答案】
    【分析】分别运用提公因式,公式法进行因式分解即可.
    【详解】解:
    故答案为:.
    【点睛】本题考查因式分解的相关知识.灵活运用提公因式和公式法进行因式分解是解题的关键.解题时注意,分解一定要彻底,这是易错点.
    2.(2023春·山东济宁·九年级校考阶段练习)分解因式:.
    【答案】
    【分析】先变形,再提取公因式,然后再利用平方差公式进行分解因式.
    【详解】解:

    故答案为:.
    【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
    【类型二 综合利用提公因式法和公式法因式分解】
    例题:(2023春·江苏苏州·七年级期末)把下列各式分解因式:
    (1);(2).
    【答案】(1)
    (2)
    【分析】(1)运用平方差公式分解即可.
    (2)先提取公因式,后套用公式分解即可.
    【详解】(1)解:

    (2)

    【点睛】本题考查了平方差公式,提取公因式,完全平方公式分解因式,熟练掌握因式分解的基本步骤和方法是解题的关键.
    【变式训练】
    1.(2023春·湖南怀化·七年级溆浦县第一中学校考期中)因式分解:
    (1)(2)
    【答案】(1)
    (2)
    【分析】(1)先提取公因式,再利用完全平方公式进行因式分解;
    (2)先提取公因式,再利用平方差公式、完全平方公式进行因式分解.
    【详解】(1)解:
    (2)解:
    【点睛】本题考查因式分解,能够综合运用提取公因式法和公式法是解题的关键.
    2.(2022秋·四川巴中·八年级统考期中)因式分解:
    (1);(2)
    【答案】(1)
    (2)
    【分析】(1)先提公因式,然后根据平方差公式进行计算即可求解;
    (2)先根据完全平方公式展开,然后根据完全平方公式与平方差公式因式分解即可求解.
    【详解】(1)解:

    (2)解:

    【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.
    【类型三 十字相乘法因式分解】
    例题:(2023春·安徽阜阳·七年级校考阶段练习)阅读理解:用“十字相乘法”分解因式;.
    第一步:二次项系数2可以写成,常数项可以写成或;
    第二步:如下图,画“×”号,将1、2写在“×”号左边,将、3或1、写在“×”号的右边,共有如下图的四种情形:

    第三步:验算“交叉相乘两个积的和”是否等于一次项的系数:
    ①的系数为;②的系数为;
    ③的系数为;④的系数为.
    显然,第②个“交叉相乘两个积的和”等于一次项系数,因此有:.像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.
    问题:
    (1)分解因式:;
    ①完善下图中“×”号右边的数使得;“交叉相乘两个积的和”等于一次项系数;

    ②分解因式:_______;
    (2)分解因式:.
    ①完善横线上的数字;

    ②分解因式:________.
    【答案】(1)①见解析;②
    (2)①见解析;②
    【分析】(1)(2)①根据“交叉相乘两个积的和”等于一次项系数填写横线上的数;②根据所填数字,仿照材料分解即可.
    【详解】(1)解:① ;
    ②;
    (2)① ;
    ②.
    【点睛】本题考查了十字相乘法分解因式,解题的关键是读懂材料,理解十字相乘法的计算方法.
    【变式训练】
    1.(2023春·广西北海·七年级统考期中)阅读理解:用“十字相乘法”因式分解
    例如:求:
    (1)
    (2)
    【答案】(1)
    (2)
    【分析】(1)根据题干中解题过程,对二次项系数、常数项分别分解,交叉相乘再相加,凑成一次项系数即可求解;
    (2)根据题干中解题过程,对二次项系数、常数项分别分解,交叉相乘再相加,凑成一次项系数即可求解.
    【详解】(1)解:如图,

    (2)解:如图,
    ∴.
    【点睛】本题考查十字相乘法因式分解,掌握分解的步骤是解题的关键.
    2.(2023春·广西梧州·七年级统考期中)阅读理解题
    在因式分解中有一种常用的方法叫十字相乘法,可以用一元二次式的因式分解,这个方法其实就是运用乘法公式运算来进行因式分解,
    基本式子为:,
    例如:分解因式,,,
    按此排列: 交叉相乘,乘积相加等于,
    得到,这就是十字相乘法.
    利用上述方法解决下列问题:
    (1)分解因式:;
    (2)先分解因式,再求值:,其中.
    【答案】(1)
    (2),45
    【分析】(1)根据十字相乘法进行因式分解即可;
    (2)先运用式子相乘法进行因式分解,再代入求解.
    【详解】(1)解:;
    (2)
    当时,原式.
    【点睛】本题考查了因式分解,熟练掌握十字相乘法进行因式分解是解题的关键.
    3.(2023春·湖南岳阳·七年级统考期末)阅读理解:用“十字相乘法”分解因式的方法(如图).
    第一步:二次项;
    第二步:常数项,画“十字图”验算“交叉相乘之和”;

    第三步:发现第③个“交叉相乘之和”的结果等于一次项.
    即.
    像这样,通过画“十字图”,把二次三项式分解因式的方法,叫做“十字相乘法”.
    运用结论:
    (1)将多项式进行因式分解,可以表示为_______________;
    (2)若可分解为两个一次因式的积,请画好“十字图”,并求整数的所有可能值.
    【答案】(1)
    (2)图见解析,,,,16
    【分析】(1)根据“十字相乘法”的步骤分解因式即可;
    (2)根据“十字相乘法”的步骤分解因式即可.
    【详解】(1)解:,常数项,


    故答案为:;
    (2)解:,常数项,
    画“十字图”如下:

    ,,,16.
    【点睛】本题考查了十字相乘法分解因式,理解十字相乘法是解题的关键.
    4.(2023春·陕西榆林·八年级统考期末)阅读下列材料:将一个形如的二次三项式因式分解时,如果能满足且,则可以把因式分解成.
    例如:(1);(2).
    根据材料,把下列式子进行因式分解.
    (1);
    (2);
    (3).
    【答案】(1)
    (2)
    (3)
    【分析】根据进行解答即可.
    【详解】(1)解:;
    (2)解:;
    (3)解:.
    【点睛】本题考查了十字相乘法分解因式,运用十字相乘法分解因式时,要意观察,尝试,并体会它实质是二项式乘法的逆过程,注意分解因式一定要彻底.
    【类型四 分组分解法因式分解】
    例题:(2023春·陕西西安·八年级高新一中校考期末)《义务教育数学课程标准(2022年版》关于运算能力的解释为:运算能力主要是指根据法则和运算律进行正确运算的能力,因此,我们面对没有学过的数学题时,方法可以创新,但在创新中要遵循法则和运算律,才能正确解答,下面介绍一种分解因式的新方法——拆项补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于已学过的方法进行分解.
    例题:用拆项补项法分解因式.
    解:添加两项.
    原式
    请你结合自己的思考和理解完成下列各题:
    (1)分解因式:;
    (2)分解因式;
    (3)分解因式:.
    【答案】(1)
    (2)
    (3)
    【分析】(1)根据例题用拆项补项法分解因;
    (2)根据例题用拆项补项法分解因;
    (3)根据例题用拆项补项法分解因;
    【详解】(1)解:

    (2)
    (3)
    【点睛】本题考查了因式分解,理解题意,正确的增项是解题的关键.
    【变式训练】
    1.(2023春·江苏泰州·七年级靖江市靖城中学校联考阶段练习)将一个多项式分组后,可提公因式或运用公式继续分解的方法是因式分解中的分组分解法,一般的分组分解法有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法“3+3”分法等.
    如“2+2”分法:
    请你仿照以上方法,探索并解决下列问题:
    (1)分解因式:;
    (2)分解因式:;
    (3)分解因式:.
    【答案】(1));
    (2);
    (3).
    【分析】利用分组分解法、公式法进行因式分解.
    【详解】(1)解:
    =;
    (2)解:

    (3)解:

    【点睛】本题考查的是分组分解法因式分解,掌握分组分解法、公式法的一般步骤是解题的关键.
    2.(2023春·山东青岛·八年级统考期末)【问题提出】:分解因式:(1) (2)
    【问题探究】:某数学“探究学习”小组对以上因式分解题目进行了如下探究:
    探究1:分解因式:(1)
    分析:甲发现该多项式前两项有公因式,后两项有公因式,分别把它们提出来,剩下的是相同因式,可以继续用提公因式法分解.
    解:
    另:乙发现该多项式的第二项和第四项含有公因式,第一项和第三项含有公因式,把,提出来,剩下的是相同因式,可以继续用提公因式法分解.
    解:
    探究2:分解因式:(2)
    分析:甲发现先将看作一组应用平方差公式,其余两项看作一组,提出公因式6,则可继续再提出因式,从而达到分解因式的目的.
    解:
    【方法总结】:对不能直接使用提取公因式法,公式法进行分解因式的多项式,我们可把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和公式法进行分解,然后,再从总体上按“基本方法”继续进行分解,直到分解出最后结果.这种分解因式的方法叫做分组分解法:
    【学以致用】:尝试运用分组分解法解答下列问题;
    (1)分解因式:;
    (2)分解因式:;
    【拓展提升】:
    (3)分解因式:.
    【答案】(1);(2);(3).
    【分析】(1)把前面两个和后面两个分别组成两组,提公因式后再利用平方差公式继续分解;
    (2)把前面三个和后面一个组成两组,利用公式分解即可;
    (3)把15分解成,再把前面三个和后面一个组成两组,利用公式分解即可.
    【详解】解:(1)

    (2)

    (3)

    【点睛】解答本题的关键是注意用分组分解法时,一定要考虑分组后能否提取公因式,运用公式.
    【类型五 因式分解的应用】
    例题:(2023秋·广东深圳·九年级校考开学考试)小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:,,,,,分别对应下列六个字:华、爱、我、中、游、美,现将因式分解,结果呈现的密码信息可能是( )
    A.我爱美B.中华游C.爱我中华D.美我中华
    【答案】C
    【分析】将原式进行因式分解即可求出答案.
    【详解】解:原式
    由条件可知,可表示为“爱我中华”,
    故选:C.
    【点睛】本题考查因式分解的应用,涉及平方差公式,提取公因式法,并考查学生的阅读理解能力.
    【变式训练】
    1.(2023春·浙江宁波·七年级校考期中)已知正方形的边长为b,正方形的边长为.如图1,点H与点A重合,点E在边上,点G在边上,记阴影部分的面积为;如图2,在图1正方形位置摆放的基础上,在正方形的右下角又放了一个和正方形一样的正方形,使一个顶点和点C重合,两条边分别落在和上,记阴影部分面积为和. 若,,则的值是( )
    A.1B.2C.3D.4
    【答案】A
    【分析】先表示出和的面积,进而求出a和b的值,再根据表示边长为的正方形的面积,即可求解;
    【详解】∵的面积等于正方形面积-正方形面积,是边长为的正方形的面积,
    ∴,,
    ∵,,
    ∴,,
    ∴,,
    ∴,
    解,得,,
    ∵S3表示边长为的正方形的面积,
    ∴;
    【点睛】本题考查了因式分解的应用,解二元一次方程组,掌握割补法求图形面积的方法是解决(1)的关键;解(2)的关键是正确理解图形面积公式,会表示相应线段的长和图形的面积.
    2.(2023春·广东深圳·八年级统考期末)因式分解的常用方法有提公因式法和公式法,但有些多项式无法直接使用上述方法分解,如,我们可以把它先分组再分解:,这种方法叫做分组分解法.
    请解决下列问题:
    (1)分解因式:;
    (2)已知a,b,c是的三边,且满足,请判断的形状,并说明理由,
    【答案】(1)
    (2)是等腰三角形,理由见解析
    【分析】(1)根据题干中的方法进行分组分解因式即可;
    (2)利用分组法分解因式,然后得出,即可判断三角形的形状.
    【详解】(1)

    (2)是等腰三角形.理由如下:


    ,,是的三边,



    是等腰三角形.
    【点睛】本题主要考查分组分解因式及提公因式与公式法分解因式,等腰三角形的定义等,理解题意,深刻理解题干中的分组分解法是解题关键.
    3.(2023秋·山西临汾·八年级统考阶段练习)我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如由图1可以得到.请回答下列问题:

    (1)写出图2中所表示的数学等式:___________.
    (2)利用(1)中所得的结论,解决下列问题:已知,,求的值.
    (3)图3中给出了若干个边长为a和边长为b的小正方形纸片及若干个长为b、宽为a的长方形纸片.请按要求利用所给的纸片拼出一个几何图形,并画在所给的方框内,要求所拼的几何图形的面积为.
    【答案】(1)=
    (2)45
    (3)见解析
    【分析】(1)正方形、长方形硬纸片共9块的面积等于边长为的正方形即可得出答案;
    (2)利用(1)中所求,将原式变形,进而求出答案;
    (3)正方形、长方形硬纸片共9块的面积等于长为,宽为的矩形面积;
    【详解】(1)由拼图面积可得:;
    (2),,

    (3)如图所示,所拼出的几何图形的面积为:

    【点睛】本题考查了因式分解的应用:利用因式分解解决求值问题,利用因式分解解决证明问题,利用因式分解简化计算问题.
    【过关检测】
    一、单选题
    1.(2023春·重庆·八年级重庆市南坪中学校校联考期末)下列等式中,从左到右的变形是因式分解的是( )
    A.B.
    C.D.
    【答案】D
    【分析】根据因式分解的定义“将多项式化为几个整式的积的形式”,由此即可求解.
    【详解】解:、不是因式分解,不符合题意;
    、不是因式分解,不符合题意;
    、等号右边不是整式,不是因式分解,不符合题意;
    、是因式分解,符合题意;
    故选:.
    【点睛】本题主要考查因式分解的概念,掌握其概念是解题的关键,尤其需要主要的是选项中是积的关系,但不是整式,不属于因式分解.
    2.(2023春·湖南株洲·七年级校考期中)分解因式,结果正确的是( )
    A.B.C.D.
    【答案】D
    【分析】先提取公因式,然后利用平方差公式求解即可.
    【详解】解:
    故选:D
    【点睛】此题考查了提公因式法和公式法进行因式分解,解题的关键是熟练掌握因式分解的有关方法.
    3.(2023秋·八年级课时练习)已知a,b,c是的三边长,且满足,则的形状为( )
    A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形
    【答案】A
    【分析】由因式分解,可知,可得,因而可判断的形状.
    【详解】解析:∵,
    ∴,
    ∴.
    ∵a,b,c是的三边长,
    ∴,∴,
    ∴,
    即的是等腰三角形.
    【点睛】题考查了因式分解的应用,还考查了等腰三角形的定义,能够熟练掌握因式分解是解决本题的关键.
    4.(2023秋·八年级课时练习)小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:,,3,,a,分别对应下列六个字:中,爱,我,数,学,一,现将分解因式,结果呈现的密码信息可能是( )
    A.我爱学B.爱一中C.我爱一中D.一中数学
    【答案】C
    【分析】根据提公因式和平方差公式分解因式即可得出答案.
    【详解】解:∵,
    ∴这几个字分别为:中,爱,我,一,即我爱一中.
    故选C.
    【点睛】本题考查因式分解.掌握综合提公因式和公式法分解因式是解题关键.
    二、填空题
    5.(2023秋·云南红河·八年级统考期末)因式分解:=.
    【答案】
    【分析】先提出公因式,再利用完全平方公式进行因式分解.
    【详解】解:,
    故答案为:.
    【点睛】本题考查因式分解,解题的关键是综合运用提公因式法和公式法.
    6.(2023秋·四川成都·九年级成都七中校考开学考试)分解因式:.
    【答案】
    【分析】提公因式后利用平方差公式因式分解即可.
    【详解】解:原式

    故答案为:.
    【点睛】本题考查因式分解,熟练掌握因式分解的方法是解题的关键.
    7.(2023秋·九年级课时练习)若实数,满足,则的值为.
    【答案】或1
    【分析】将看作一个整体,利用因式分解法解一元二次方程求出的值即可.
    【详解】解:∵,
    ∴或,
    解得:或,
    故答案为:或1.
    【点睛】此题考查了解一元二次方程—因式分解法,将x+y看作一个整体是解本题的关键.
    8.(2023秋·八年级课时练习)已知的三边长a,b,c满足,则的形状为.
    【答案】等腰三角形
    【分析】将进行因式分解,转化为,进而得到,即可得出结论.
    【详解】解析:∵,
    ∴,
    ∴.
    ∵a,b,c是的三边长,
    ∴,
    ∴,
    ∴,即为等腰三角形.
    故答案为:等腰三角形.
    【点睛】本题考查因式分解的应用,正确的进行因式分解,是解题的关键.
    三、解答题
    9.(2023秋·江苏南通·八年级校考阶段练习)因式分解:
    (1) ;
    (2) ;
    (3).
    【答案】(1)
    (2)
    (3)
    【分析】(1)先提取公因式,再利用完全平方公式进行因式分解;
    (2)利用十字相乘法进行因式分解;
    (3)先提取公因式,再利用平方差公式进行因式分解.
    【详解】(1)解:

    (2)解:,,,

    (3)解:

    【点睛】本题考查因式分解,掌握提取公因式法、公式法、十字相乘法是解题的关键.
    10.(2023秋·八年级课时练习)因式分解:
    (1);
    (2);
    (3).
    【答案】(1)
    (2)
    (3)
    【分析】根据分解因式的方法求解即可.
    【详解】(1)解:原式;
    (2)原式

    (3)原式

    【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.
    11.(2023秋·八年级课时练习)因式分解:
    (1)(添项);
    (2)(拆项);
    (3)(换元).
    【答案】(1)
    (2)
    (3)
    【分析】根据分解因式的方法求解即可.
    【详解】(1)原式

    (2)方法一:原式

    方法二:原式

    (3)设,
    则原式

    【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.
    12.(2023秋·八年级课时练习)用十字相乘法分解因式:
    (1);
    (2);
    (3).
    【答案】(1)
    (2)
    (3)
    【分析】用十字相乘法分解因式求解即可.
    【详解】(1)原式.
    (2)原式

    (3)原式
    【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.
    13.(2023秋·八年级课时练习)对于形如这样的二次三项式,可以用公式法将它分解成的形式.但对于二次三项式,就不能直接运用公式了.此时,我们可以在二次三项式中先加上一项,使它与的和成为一个完全平方式,再减去,整个式子的值不变,于是有:

    像这样,先添一适当项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
    阅读以上材料,解决下列问题.
    (1)分解因式:.
    (2)当a为何值时,二次三项式取得最小值.
    【答案】(1)
    (2)时,二次三项式取得最小值,最小值为1
    【分析】(1)利用配方法进行因式分解即可;
    (2)利用配方法求最值即可.
    【详解】(1)解:原式

    (2)∵,
    又,
    ∴当时,二次三项式取得最小值,最小值为1.
    【点睛】本题考查因式分解.熟练掌握配方法,是解题的关键.
    14.(2023春·福建漳州·八年级校考期中)阅读理解∶
    当一个多项式没有公因式又不能用公式法时,这里再介绍一种因式分解方法,叫分组分解法.
    比如因式分解:
    这种分组法是分组后用提公因式法分解;
    比如因式分解:
    这种分组法是分组后用公式法分解.
    根据以上信息分解因式:
    (1);
    (2);
    (3).
    【答案】(1)
    (2)
    (3)
    【分析】(1)分组,提公因式分解;
    (2)分组,分别运用平方差公式,提公因式法分解;
    (3)运用整式乘法法则变形,再运用平方差公式展开,进一步化简.
    【详解】(1)解:原式
    (2)原式
    (3)原式

    【点睛】本题考查分组分解法,提公因式法,公式法因式分解;根据代数式具体情况合理分组是解题的关键.
    15.(2023秋·山东淄博·八年级淄博市张店区实验中学校考阶段练习)阅读与思考:
    整式乘法与因式分解是方向相反的变形.
    由得,;
    利用这个式子可以将某些二次项系数是1的二次三项式分解因式,
    例如:将式子分解因式.
    分析:这个式子的常数项,一次项系数,所以.
    解:
    请仿照上面的方法,解答下列问题:
    (1)分解因式:;
    (2)分解因式:;
    (3)填空:若可分解为两个一次因式的积,则整数p的所有可能的值是多少?
    【答案】(1)
    (2)
    (3)
    【分析】(1)根据所给材料信息即可求解;
    (2)先将看作一个整体进行因式分解,随后再对每一个因式进一步分解即可;
    (3),据此即可求解.
    【详解】(1)解:,
    故答案为:;
    (2)解:原式
    (3)解:若可分解为两个一次因式的积
    则整数p的所有可能值是
    故答案为:.
    【点睛】本题以材料题为背景,考查了十字相乘法.掌握相关分解方法及原理是解题关键.
    16.(2023春·江西九江·八年级校考期中)某校“数学社团”活动中,研究发现常用的分解因式的方法有提取公因式法、公式法,但还有很多的多项式只用上述方法无法分解,如:“”,细心观察这个式子就会发现,前两项可以提取公因式,后两项也可提取公因式,前后两部分分别分解因式后产生了新的公因式,然后再提取公因式

    “社团”将此种因式分解的方法叫做“分组分解法”,请在这种方法的启发下,解决以下问题:
    (1)分解因式:;
    (2)分解因式:;
    (3)的三边a,b,c满足,判断的形状并说明理由.
    【答案】(1)
    (2)
    (3)是等腰三角形;理由见解析
    【分析】(1)将和一组,和一组,分别提取公因式,再提取公因式即完成因式分解;
    (2)根据完全平方公式和平方差公式分解因式即可;
    (3)先对进行因式分解,得到,根据三角形的任意两边之和大于第三边得到,从而得到,从而证得是等腰三角形.
    【详解】(1)解:

    (2)解:

    (3)解:是等腰三角形;理由如下:
    ∵,
    ∴,
    ∴,
    ∴ ,
    ∵,
    ∴,即,
    是等腰三角形.
    【点睛】本题主要考查了因式分解,解题的关键是熟练掌握提取公因式、完全平方公式等方法.
    相关试卷

    数学2.1 整式练习: 这是一份数学<a href="/sx/tb_c20152_t7/?tag_id=28" target="_blank">2.1 整式练习</a>,文件包含专题14难点探究专题整式中的规律探究问题之七大类型原卷版docx、专题14难点探究专题整式中的规律探究问题之七大类型解析版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。

    专题17 解题技巧专题:方程中与字母参数有关的问题之五大类型-七年级数学上册重难点专题提优训练(人教版): 这是一份专题17 解题技巧专题:方程中与字母参数有关的问题之五大类型-七年级数学上册重难点专题提优训练(人教版),文件包含专题17解题技巧专题方程中与字母参数有关的问题之五大类型原卷版docx、专题17解题技巧专题方程中与字母参数有关的问题之五大类型解析版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。

    专题17 解题技巧专题:方程中与字母参数有关的问题之五大类型-【学霸满分】2023-2024学年七年级数学上册重难点专题提优训练(人教版): 这是一份专题17 解题技巧专题:方程中与字母参数有关的问题之五大类型-【学霸满分】2023-2024学年七年级数学上册重难点专题提优训练(人教版),文件包含专题17解题技巧专题方程中与字母参数有关的问题之五大类型原卷版docx、专题17解题技巧专题方程中与字母参数有关的问题之五大类型解析版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题14.5 解题技巧专题:特殊的因式分解法之五大类型-【学霸满分】2023-2024学年八年级数学上册重难点专题提优训练(人教版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map