初中25.3 用频率估计概率课时作业
展开知识梳理
在做大量重复试验时,随着试验次数的增加,一个随机事件出现的频率应该稳定于该事件发生的概率。事件发生的频率与概率既有区别又有联系:事件发生的频率不一定相同,是个变数,而事件发生的概率是个常数;但它们之间又有密切的联系,随着试验次数的增加,频率越来越稳定于概率。
在具体操作过程中,大家往往发现:虽然多次试验结果的频率逐渐稳定于概率,但可能无论做多少次试验,两者之间存在着一定的偏差。应该注意:这种偏差的存在是经常的,并且是正常的。另外,由于受到某些因素的影响,通过试验得到的估计结果往往不太理想,甚至有可能出现极端情况,此时我们应正确地看待这样的结果并尝试着对结果进行合理的解释。对试验结果的频率与理论概率的偏差的理解也是形成随机观念的一个重要环节。
在实际应用中,当试验次数越大时,出现极端情况的可能性就越小。因此,我们常常通过做大量重复试验来获得事件发生的频率,并用它作为概率的估计值。试验次数越多,得到的估计结果就越可靠。
一、单选题
1.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是( )
A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率
C.抛一枚硬币,出现正面的概率
D.抛一个质地均匀的正六面体骰子(六个面上分别标有1,2,3,4,5,6),向上的面点数是5
2.在数学活动课上,张明运用统计方法估计瓶子中的豆子的数量.他先取出粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出粒豆子,发现其中粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为( )粒.
A.B.C.D.
3.冰柜里装有四种饮料:5 瓶特种可乐、12瓶普通可乐、9瓶橘子水、6瓶啤酒,其中特种可乐和普通可乐是含有咖啡因的饮料,那么从冰柜里随机取一瓶饮料,该饮料含有咖啡因的概率是( )
A.B.C.D.
4.以下说法合理的是( )
A.小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是
B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖
C.某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是
D.小明做了3次掷均匀硬币的实验,其中有一次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的概率还是
5.绿豆在相同条件下的发芽试验,结果如下表所示:
下面有三个推断:
①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率是0.955;
②根据上表,估计绿豆发芽的概率是0.95;
③若n为4000,估计绿豆发芽的粒数大约为3800粒.
其中推断合理的是( )
A.①B.①②C.①③D.②③
6.木箱里装有仅颜色不同的8张红色和若干张蓝色卡片,随机从木箱里摸出1张卡片记下颜色后再放回,经过多次的重复试验,发现摸到蓝色卡片的频率稳定在0.6附近,则估计木箱中蓝色卡片有( )
A.18张B.16张C.14张D.12张
7.不透明的口袋内装有红球、白球和黄球共20个,这些球除颜色外其它都相同,将口袋内的球充分搅拌均匀,从中随机摸出一个球,记下颜色后放回,不断重复该摸球过程,共摸取404次球,发现有101次摸到白球,则口袋中白球的个数是( )
A.5B.10C.15D.20
8.一个不透明的盒子中装有10个黑球和若干个白球,它们除颜色不同外,其余均相同.从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球.由此估计盒子中的白球大约有( )
A.10个B.15个C.18个D.30个
9.我国魏晋时期数学家刘徽首创“割圆术”计算圆周率,随着时代发展,现在人们依据频率估计概率这一原理,常用随机模拟的方法对圆周率π进行估计.用计算机随机产生m个有序数对(是实数,且0≤≤1,0≤≤1),他们对应的点在平面直角坐标系中全部在某一个正方形的边界及其内部,如果统计出这些点中到原点的距离小于或等于1的点有n个,则据此可估计π的值为( ).
A.B.C.D.
10.如图的四个转盘中,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是( )
A.B.C.D.
二、填空题
11.从同一高度落下的图钉,落地后可能钉尖着地,也可能钉帽着地,通过试验发现:钉尖着地的概率 钉帽着地的概率.(填“>”、“<”或“=”)
12.在一个不透明的袋子里,装有若干个小球.这些小球只有颜色上的区别.已知其中只有两个红球.每次摸球前都将袋子里的球搅匀.随机摸出一个小球,记下颜色并将球放回袋子里.通过大量重复试验后,发现摸出红球的频率稳定在,那么据此估计,袋子里的球的总数大约是 个.
13.在不透明的袋子里装有颜色不同的16个红球和若干个白球,每次从袋子里摸出来1个球记录下颜色后再放回,经过多次重复试验,发现摸到白球的频率稳定在0.6左右,估计袋中白球有 .
14.当试验的所有可能的结果不是有限个或各种可能的结果发生的可能性不相等时,我们一般通过 来估计概率.
15.在一块试验田抽取1000个麦穗考查它的长度(单位:cm)对数据适当分组后看到落在5.75~6.05之间的频率为0.36,于是可以估计出这块田里长度为5.75~6.05cm之间的麦穗约占 %.
16.有A,B两个黑布袋,A布袋中有四个除标号外完全相同的小球,小球上分别标有数字0,1,2,3;B布袋中有三个除标号外完全相同的小球,小球上分别标有数字0,1,2.小明先从A布袋中随机取出一个小球,用m表示取出的球上标有的数字,再从B布袋中随机取出一个小球,用n表示取出的球上标有的数字.若用(m,n)表示小明取球时m与n的对应值,则使关于x的一元二次方程x2-mx+n=0有实数根的概率为 .
17.一个口袋里有相同的红、绿、黄三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是,则任意摸出一个黄球的概率是 .
18.小宏联系投篮次,投中的次数为次,在同一条件下,小宏投篮一次,投中的概率估计是 .
19.如图,小明的健康绿码示意图,用黑白打印机打印于边长为的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在左右,据此可以估计黑色部分的总面积约为 .
20. 描述的是事件发生的频繁程度.严格的定义是:在相同的条件下,进行n次试验,事件A发生的次数nA称为事件A的频数,比值 称为事件A发生的频率.
三、解答题
21.一个不透明的箱子中装有1张白色的卡片和若干张红色的卡片,这些卡片除颜色外,大小、形状、厚度等均相同.某学习小组做试验:将卡片搅匀后从中任意摸出1张卡片,记下颜色后放回;搅匀后再摸一张卡片,记下颜色后放回;不断重复上述过程,获得数据如下:
(1)根据上表估计,任意摸一次为白色卡片的概率为(精确到),求红色卡片有多少张?
(2)现从该箱子中先后各摸出1张卡片,求恰好两张卡片颜色相同的概率.
22.甲乙两人做掷一个均匀小立方体的游戏,立方体的每个面上分别标有数字1,2,3,4,5,6,任意掷出小立方体后,若朝上的数字小于3,则甲获胜;若朝上的数字大于3 ,则乙获胜.你认为这个游戏对甲乙双方公平吗?为什么?你能不能就上面的小立方体设计一个较为公平的游戏?
23.在“五·四”青年节中,全校举办了文艺汇演活动.小丽和小芳都想当节目主持人,但现在只有一个名额.小丽想出了一个办法,她将一个转盘(均质的)均分成6份,如图所示. 游戏规定:随意转动转盘,
(1)指针指到1的可能性是多少?
(2)若指针指到3,则小丽去;若指针指到2,则小芳去.若你是小芳,会同意这个办法 吗?为什么?
24.研究“掷一枚图钉,钉尖朝上”的概率,两个小组用同一个图钉做试验进行比较,他们的统计数据如下:
(1)请你估计第一小组和第二小组所得的概率分别是多少?
(2)你认为哪一个小组的结果更准确?为什么?
参考答案:
1.B
2.B
3.D
4.D
5.D
6.D
7.A
8.B
9.C
10.B
11.<
12.10.
13.24
14.统计频率
15.36
16.
17.
18.
19.
20. 频率
21.(1)红色卡片有3张
(2)恰好两张卡片颜色相同的概率为
22.不公平;改为:若朝上的数字小于4,则甲获胜;若朝上的数字大于3 ,则乙获胜.
23.(1)
(2)不同意.
24.(1) 0.4; 0.41.(2)不能准确说明偏向.
实验次数
100
200
300
500
800
1000
2000
频率
0.365
0.328
0.330
0.334
0.336
0.332
0.333
每批粒数n
100
300
400
600
1000
2000
3000
发芽的粒数m
96
282
382
570
948
1904
2850
发芽的频率
0.960
0.940
0.955
0.950
0.948
0.952
0.950
摸卡的次数
摸到白色卡片的频数
摸到白色卡片的频率
初中数学人教版九年级上册25.3 用频率估计概率练习: 这是一份初中数学人教版九年级上册25.3 用频率估计概率练习,共10页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学人教版九年级上册25.3 用频率估计概率精品课后练习题: 这是一份初中数学人教版九年级上册25.3 用频率估计概率精品课后练习题,共10页。试卷主要包含了3 用频率估计概率》基础巩固卷,下列说法正确的是,6,则他投10次可投中6次等内容,欢迎下载使用。
人教版九年级上册25.3 用频率估计概率达标测试: 这是一份人教版九年级上册25.3 用频率估计概率达标测试,共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。