江苏省南通市2023-2024学年六年级上学期数学期中质量调研试卷二(苏教版)
展开考试分数:100分;考试时间:90分钟 (2023.11)
注意事项:
1.答题前,填写好自己的姓名、班级、考号等信息,请写在答题卡规定的位置上。
2.选择题、判断题必须使用2B铅笔填涂答案,非选择、判断题必须使用黑色墨迹签字笔或钢笔答题,请将答案填写在答题卡规定的位置上。
3.所有题目必须在答题卡上作答,在试卷上作答无效。
4.考试结束后将试卷和答题卡一并交回。
一、计算题(共18分)
1.(6分)计算下面各图形的表面积和体积。(单位:米)
2.(6分)下面各题,能简便计算的用简便方法计算。
① ② ③
3.(6分)求比值。
0.28∶0.7 2.5千克∶400克 0.75∶
二、填空题(共20分)
4.(2分)如图是一个正方体的展开图。
(1)这个正方体中,“4”的对面是“( )”。
(2)抛起这个正方体,落下后,质数朝上的可能性比合数朝上的可能性( )。(填“大”或“小”)
5.(2分)一根绳子长米,第一次用去它的,第二次用去米,第( )次用去的多,两次一共用去( )米。
6.(2分)一根木料长2米,横截面是边长3分米的正方形,截成两段后表面积比原来增加( )平方分米。
7.(2分)用一根长24厘米的铁丝做成一个正方体框架,这个正方体的棱长是( )厘米,每个面的面积是( )平方厘米。
8.(2分)张老师准备给表演小组的5名学生每人买一双短靴和一双运动鞋。估计一下,一共需要( )元,实际上一共花了( )元。
短靴每双97元 运动鞋每双212元
9.(2分)妈妈买了2袋红糖和3袋白糖,一共用去18.5元。1袋红糖比1袋白糖便宜0.5元。每袋红糖需要( )元,每袋白糖需要( )元。
10.(2分)学校合唱队有36人,其中男生与女生人数的比是1∶3。这个合唱队中男生( )人,女生( )人。
11.(2分)王师傅每小时织布米,她小时织布( )米,织米布要用( )小时。
12.(2分)某种羊绒衫现价比原价降低了,正好降低了90元,这种羊绒衫原价是( )元,现价是( )元。
13.(2分)3.5公顷=( )平方米 时=( )分
三、选择题(共8分)
14.(1分)第一筐有鸡蛋125个,第二筐有鸡蛋78个,从第一筐里拿出多少个放入第二筐后,第一筐的鸡蛋还比第二筐多11个?设从第一筐中拿出x个给第二筐。错误列式是( )。
A.125-x-11=78+xB.125-x+11=78+x
C.(125-x)-(78+x)=11D.125-x=78+x+11
15.(1分)一个三角形和一个平行四边形的底和高都相等,那么这个三角形和这个平行四边形的面积之比为( )。
A.1∶4B.4∶1C.1∶2D.2∶1
16.(1分)一堆煤重5吨,每天用去它的,7天用去这堆煤的( )。
A.B.吨C.D.吨
17.(1分)100吨增加后,再减少,最后的重量与原来的重量相比( )。
A.一样重B.原来重C.现在重D.无法比较
18.(1分)一个长6厘米,宽4厘米,高5厘米的长方体盒子,最多能放( )个棱长是2厘米的正方体的木块。
A.15B.14C.13D.12
19.(1分)下面的图形中,( )沿虚线折叠后不能围成正方体.
A.B.C.D.
20.(1分)两根同样长8米的铁丝,从第一根截去它的,从第二根截去米,余下的部分( )。
A.一样长B.第一根长C.第二根长D.无法确定
21.(1分)科技书有100本,[ ],文艺书有多少本?如果求文艺书本数的列式为100×(1+)。[ ]中应填( )
A.比文艺收多 B.比文艺书少
C.文艺书比科技书多D.文艺书比科技书少
四、作图题(共6分)
22.(6分)在下面方格纸中,画一个周长是28厘米的长方形,要求长与宽的比是4∶3,并把长方形分为1∶2的两个小长方形。(小方格边长1厘米)
五、解答题(共48分)
23.(6分)李老师在商场买了一盒礼品,礼品盒是一个长4分米、宽3分米、高2.5分米的长方体。
(1)如果要用彩带把这个礼品盒捆扎起来(扎法如下图,打结处彩带长2分米),一共需要彩带多少分米?
(2)做这个礼品盒至少需要多少平方分米的硬纸板?
24.(6分)一个长方体容器(如图,单位:厘米),长30厘米,宽20厘米,高10厘米,现在容器内的水深6厘米。如果把这个容器装满水,还需要多少毫升的水?
25.(6分)水果店运来苹果和香蕉共440千克。当苹果卖出,香蕉卖出时,两种水果卖出的质量相同。水果店运来苹果和香蕉各多少千克?
26.(6分)广告绘画师用黑色和红色涂料调配出棕色涂料,已知黑色涂料比红色的多150克,黑色涂料和红色涂料的配比是7∶4。黑色和红色涂料各用了多少克?
27.(6分)国庆环保活动中,五年级(1)班捡塑料瓶1750个,五年级(2)班捡的个数比五(1)班的还多110个,五年级(2)班捡塑料瓶多少个?
28.(6分)两筐苹果共重70千克。从第一筐取出放入第二筐,两筐苹果就同样重。原来两筐苹果各重多少千克?
29.(6分)六(2)班2名老师和48名学生去里运河景区划船,租12只船正好坐满。每只大船坐5人,每只小船坐3人。租的大船和小船各有多少只?
30.(6分)2022年11月29日,神州十五号载人飞船发射成功,飞行乘组由费俊龙、邓清明、张陆组成。下面是三位航天员今年年龄关系的线段图。
三位航天员分别是多少岁?这样的问题可以用“假设”策略解决。(先完成下面的填空,再解答)
假设三位航天员的年龄同样大,那么三人的年龄总和是( )岁。请分别算出他们的年龄。
参考答案
1.216平方米,180立方米;384平方米,512立方米
【分析】根据长方体的表面积公式:S=(ab+ah+bh)×2;长方体的体积公式:V=abh;正方体的表面积公式:S=6a2;正方体的体积公式:V=a3;据此代入数值进行计算即可。
【详解】(10×3+10×6+3×6)×2
=(30+60+18)×2
=108×2
=216(平方米)
10×3×6
=30×6
=180(立方米)
8×8×6
=64×6
=384(平方米)
8×8×8
=64×8
=512(立方米)
2.①6;②;③
【分析】①先把除以4改写成乘,再按顺序先算乘法,最后算减法;
②先把除以改写成乘,然后利用乘法结合律进行计算;
③先算小括号内的加法,再算中括号内的乘法,最后算中括号外的除法。
【详解】①
=
=7
=
②
=
=
=
=
③
=
=
=
=
=
3.0.4;6.25;
【分析】求比值直接用前项÷后项即可,求比值的结果是一个数。
【详解】0.28∶0.7=0.28÷0.7=0.4
2.5千克∶400克=2500÷400=6.25
0.75∶=×=
4.(1)5
(2)大
【分析】(1)根据正方体展开图的11种特征,此图属于正方体展开图的“2-2-2”型,折成正方体后,数字“1”与“6”相对,“2”与“3”相对,“4”与“5”相对。
(2)根据质数的意义:一个数,除了1和它本身没有其它因数,这样的数叫做质数;一个数,除了1和它本身还有其它因数,这样的数叫做合数;在1、2、3、4、5、6中,质数有2、3、5,合数有4、6,质数比合数多,抛起这个正方体,落下后,质数朝上可能性比合数大,据此解答。
【详解】(1)根据分析可知,这个正方体中,“4”的对面是“5”。
(2)1,2,3,4,5,6中,质数有:2,3,5,共3个;
合数有:4,6,共2个;
2<3,抛起这个正方体,落下后,质数朝上比合数朝上的可能性大。
本题考查正方体展开图的特征,质数和合数的意义以及可能性大小。
5. 二
【分析】用绳子的长度×,求出第一次用去的长度,再和第二次用去的长度比较,求出哪次用的长;再把第一次用去的长度与第二次用去的长度相加,即可求出两次一共用去的长度,据此解答。
【详解】×=(米)
<,第二次用去的多。
+
=+
=(米)
一根绳子长米,第一次用去它的,第二次用去米,第二次用去的多,两次一共用去米。
本题考查求一个数的几分之几是多少,异分母分数比较大小以及异分母分数加法的计算。
6.18
【分析】根据题意可知,把长方体锯成2段,表面积增加了2个正方形面,正方形的边长是3分米,根据正方形的面积公式,用3×3×2即可求出增加的表面积。
【详解】3×3×2=18(平方分米)
一根木料长2米,横截面是边长3分米的正方形,截成两段后表面积比原来增加18平方分米。
本题主要考查了立体图形的切拼,明确表面积增加了哪些面,体积没有发生变化。
7. 2 4
【分析】根据正方体的特征,正方体的12条棱的长度都相等,6个面的面积都相等,用一根24厘米长的铁丝做成一个正方体框架,也就是这个正方体框架的棱长总和是24厘米,用棱长总和除以12即可求出棱长,再根据正方形的面积=边长×边长,把数据代入公式解答。
【详解】24÷12=2(厘米)
2×2=4(平方厘米)
此题主要考查正方体的棱长总和公式、正方形的面积公式的灵活运用,关键是熟记公式。
8. 1500 1545
【分析】根据总价=单价×数量,先计算出一双短靴和一双运动鞋一共需要多少元,再乘5,根据三位数乘一位数的估算方法即可求出需要多少元,再根据三位数乘一位数的计算方法进行解答。
【详解】212+97=309(元)
309×5≈1500(元)
309×5=1545(元)
本题主要考查单价、数量和总价三者的关系,注意三位数乘一位数的估算时将三位数看作与它接近的整百数。
9. 3.4 3.9
【分析】设每袋红糖需要x元,则每袋白糖需要x+0.5元,根据2袋红糖的钱数+3袋白糖钱数=18.5元,列出方程求解即可。
【详解】解:设每袋红糖需要x元,则每袋白糖需要x+0.5元,根据题意得:
2x+3(x+0.5)=18.5
5x+1.5=18.5
x=17÷5
x=3.4
x+0.5=3.4+0.5=3.9
本题主要考查列方程解含有两个未知数的问题,解题的关键是找出等量关系式并列出方程。
10. 9 27
【分析】把合唱队人数平均分成(3+1)份,先用除法求出1份人数,即男生人数,再用乘法求出3份人数,即女生人数。
【详解】36÷(1+3)
=36÷4
=9(人)
9×3=27(人)
这个合唱队中男生9人,女生27人。
此题考查了比的应用。除按上述解答方法外,也可把比转化成分数,再根据分数乘法的意义解答。
11.
【分析】工作效率×工作时间=工作总量,工作总量÷工作效率=工作时间,据此解答。
【详解】(米)
(小时)
则她小时织布米,织米布要用小时。
掌握并熟练运用工作效率、工作时间与工作总量之间的关系是解题的关键。
12. 450 360
【分析】把原价看作单位“1”,现价比原价降低了,对应的是90元,求单位“1”,用90÷,即可求出原价,再用原价-90元,即可求出现价。
【详解】90÷
=90×5
=450(元)
450-90=360(元)
某种羊绒衫现价比原价降低了,正好降低了90元,这种羊绒衫原价是450元,现价是360元。
熟练掌握已知一个数的几分之几是多少,求这个数的计算方法是解答本题的关键。
13. 35000 12
【分析】3.5公顷转化为平方米,是大单位转化为小单位,乘进率10000;时转化为分,是大单位转化为小单位,乘进率60。
【详解】3.5公顷=3.5×10000=35000(平方米)
时=×60=12(分)
掌握不同单位单位之间的进率及转化方向,采用合适的计算方法是解答的关键。
14.B
【分析】由题意可知:第一筐中剩下的鸡蛋为125-x个,放入第二筐后,第二筐中的鸡蛋有78+x,此时第一筐的鸡蛋还比第二筐多11个;据此解答。
【详解】由分析可列方程:(125-x)-11=78+x或(125-x)-(78+x)=11或125-x=78+x+11。
故答案为:B
本题主要考查列方程解含有一个未知数的问题,解题的关键是找出等量关系式。
15.C
【分析】根据三角形的面积公式:底×高÷2;平行四边形的面积公式:底×高;当平行四边形的和三角形的底相等,高也相等,那么平行四边形的面积是三角形的2倍,设三角形的面积是1;则与它等底等高的平行四边形的面积是2;据此即可求出这个三角形和这个平行四边形的面积比。
【详解】由分析可知:
设三角形的面积是1;则平行四边形的面积是:1×2=2
所以三角形和平行四边形的面积比是1∶2。
故答案为:C
本题主要考查三角形的面积公式、平行四边形的面积公式以及比的意义,熟练掌握它们的公式并灵活运用。
16.A
【分析】根据分数和分数乘法的意义,用乘7即可解答。
【详解】×7=,7天用去这堆煤的。
故答案为:A
要正确区分求7天用去这堆煤的分率、用去的具体数量之间的不同。
17.B
【分析】把原来重量看作单位“1”,增加10%就是原来重量的1+10%=110%,先运用分数乘法意义,求出增加后重量,并把此看作单位“1”,再减少10%就是此时重量的1-10%=90%,运用分数乘法意义,求出减少后的重量,最后与原来重量比较即可解答。
【详解】
(吨)
99吨吨
最后的重量与原来的重量相比原来重。
故答案为:
分数乘法意义是解答本题的依据,注意单位“1”的变化。
18.D
【分析】根据题意可知,用除法分别求出长方体盒子的长、宽、高里面包含多少个2厘米,再根据长方体的体积公式:V=abh,把数据代入即可。
【详解】由分析可得:
以长为边最多放的个数:
6÷2=3(个)
以宽为边最多放的个数:
4÷2=2(个)
以高为边最多放的个数:
5÷2=2(个)……1(个)
所以该仓库能放进去棱长为3米的正方体木箱个数为:
3×2×2
=6×2
=12(个)
故答案为:D
本题是易错题,不能直接用长方体盒子的体积除以每个正方体的体积,必须先用除法分别求出长方体的长、宽、高各包含正方体棱长的个数,从而求出正方体个数。
19.C
【解析】略
20.C
【分析】根据求一个数的几分之几是多少,用这个数乘几分之几,即第一根截去了:8×=3(米),还剩下8-3=5(米),第二根截去了米,还剩下:8-=(米),之后再比较大小即可。
【详解】第一根余下部分是:(米)
8-5=3(米)
第二根余下部分是:(米)
因5米米,所以则第二根剩余的多;
故答案为:C
本题主要考查求一个数的几分之几是多少的计算方法,同时要清楚分数后面加单位表示具体的量。
21.C
【分析】通过算式发现此题属于稍复杂的分数乘法应用题,用乘法求文艺书的本数,可以确定单位“1”是科技书的本数,那么文艺书的本数就是它的1+,所以应填文艺书比科技书多.解决此题关键是根据用乘法计算文艺书的本数,可以确定单位“1”是科技书的本数,进而确定缺少的条件。
【详解】由算式100×(1+)可确定是以科技书为单位“1”,所以这个式子的意思是文艺书比科技书多.
故答案为C。
22.见详解
【分析】根据长方形的周长=(长+宽)×2可知,长方形的长、宽之和=周长÷2;又已知长与宽的比是4∶3,可以把长看作4份,宽看作3份,一共是(4+3)份;用长、宽之和除以(4+3)份,求出一份数;再用一份数分别乘长、宽的份数,求出长、宽,据此画出这个长方形。
根据长方形的面积=长×宽,求出所画长方形的面积,按1∶2分成两个小长方形,即两个小长方形的面积分别占总面积的、,根据求一个数的几分之几是多少,用乘法计算,分别求出这两个小长方形的面积,进而确定两个小长方形的长、宽,并在图中表示出来。
【详解】长、宽之和:28÷2=14(厘米)
一份数:
14÷(4+3)
=14÷7
=2(厘米)
长:2×4=8(厘米)
宽:2×3=6(厘米)
画一个长8厘米、宽6厘米的长方形,如下图。
长方形的面积:8×6=48(平方厘米)
48×=16(平方厘米)
48×=32(平方厘米)
16=8×2,32=8×4
可以分成一个长为8厘米、宽为2厘米的小长方形,一个长为8厘米、宽为4厘米的小长方形。
如图:
本题考查比的应用,利用长方形的周长公式,并把比看作份数,求出一份数,进而求出长方形的长、宽是画长方形的关键。
根据长方形的面积公式,并把比转化成分数,根据分数乘法的意义求出分成的两个小长方形的面积,进而确定它们的长、宽是解题的关键。
23.(1)26分米
(2)59平方分米
【分析】(1)根据长方体的特征,12条棱分为3组,每组4条棱的长度相等,由图形可知,所需彩带的长度等于两条长+两条宽+4条高再加上打结用的2分米,据此解答;
(2)首先搞清这道题是求长方体的表面积,其次这个长方体的表面由六个长方形组成,求得这六个面的面积和即可解决问题。
【详解】(1)4×2+3×2+2.5×4+2
=8+6+10+2
=26(分米)
答:一共需要彩带26分米。
(2)(4×3+3×2.5+2.5×4)×2
=(12+7.5+10)×2
=29.5×2
=59(平方分米)
答:做这个礼品盒至少要59平方分米的硬纸板。
(1)此题考查的目的是理解掌握长方体的特征,关键是弄清如何捆扎的,确定是求哪几条棱的长度和;
(2)是一道长方体表面积的实际应用,在计算时要分清需要计算几个长方形面的面积。
24.2400毫升
【分析】根据长方体体积公式:体积=长×宽×高,先计算出高是10厘米长方体的体积,再求出水深是6厘米的体积,再用高是10厘米长方体的体积-水深是6厘米长方体的体积,即可解答。
【详解】30×20×10-30×20×6
=600×10-600×6
=6000-3600
=2400(立方厘米)
2400立方厘米=2400毫升
答:还需要2400毫升的水。
熟练掌握长方体体积公式的应用,关键是熟记公式。
25.水果店运来苹果200千克,香蕉240千克
【分析】根据题意可知,苹果质量的=香蕉质量的,即苹果质量×=香蕉质量×,根据这个等式可以写出比例:苹果质量∶香蕉质量=∶,从而可以求出苹果质量和香蕉质量的比,再将440千克按比分配即可解答。
【详解】苹果∶香蕉质量
=∶
=÷
=×
=
=5∶6
苹果质量:
440÷(5+6)×5
=440÷11×5
=40×5
=200(千克)
香蕉质量:
440÷(5+6)×6
=440÷11×6
=40×6
=240(千克)
答:水果店运来苹果200千克,香蕉240千克。
本题只要先通过它们的质量比求出它们各占总质量的几份后就容易求出各自有多少千克了。
26.黑色涂料350克;红色涂料200克
【分析】根据题意可知,黑色涂料和红色涂料的配比是7∶4,则把黑色涂料看作7份,红色涂料看作4份,用150÷(7-4)即可求出每份是多少,进而求出7份和4份,也就是黑色涂料和红色涂料的质量。
【详解】150÷(7-4)
=150÷3
=50(克)
50×7=350(克)
50×4=200(克)
答:黑色涂料有350克,红色涂料有200克。
本题主要考查了按比分配问题,求出每份的量是多少是解答本题的关键。
27.1510个
【分析】把五(1)班捡塑料瓶的个数看作单位“1”,根据求一个数的几分之几是多少,用乘法求出1750个的,然后再加上110个就是五(2)班捡的个数。
【详解】1750×+110
=1400+110
=1510(个)
答:五年级(2)班捡塑料瓶1510个。
此题考查的目的是理解掌握分数乘法的意义,整数加法的意义,以及混合运算的计算法则及应用。
28.第一筐苹果的重量为45千克;则第二筐苹果的重量为25千克
【分析】由题意可知,设第一筐苹果的重量为x千克,则第二筐苹果的重量为(70-x)千克,根据等量关系:第一筐苹果的重量-第一筐苹果的重量的=第二筐苹果的重量+第一筐苹果的重量的,据此列方程解答即可。
【详解】解:设第一筐苹果的重量为x千克,则第二筐苹果的重量为(70-x)千克。
x-x=(70-x)+x
x=70-x+x
x+x=70-x+x+x
x=70+x
x-x =70+x-x
x=70
x×=70×
x=45
70-45=25(千克)
答:第一筐苹果的重量为45千克,则第二筐苹果的重量为25千克。
本题考查用方程解决实际问题,明确等量关系是解题的关键。
29.租大船:7只;租小船:3只
【分析】根据题意,设租大船x只,则租小船12-x只;每只大船坐5人。x只坐5x人;每只小船坐3人,(12-x)只坐(12-x)×3人,一共2+48人;列方程:5x+(12-x)×3=2+48
【详解】解:设租大船x只,则租小船12-x只。
5x+(12-x)×3=2+48
5x+12×3-3x=50
2x=50-36
2x=14
x=14÷2
x=7
租小船:10-7=3(只)
答:租大船7只,租小船3只。
根据鸡兔同笼的知识,设出未知数,列方程,解方程。
30.张陆46岁,邓清明56岁,费俊龙57岁
【分析】假设三位航天员的年龄同样大,都与张陆的年龄相同,则三人的年龄和是159-10-11=138岁,根据除法的意义,用这个年龄和(138岁)÷3求出张陆的年龄,进而得出费俊龙、邓清明的年龄。
【详解】假设三位航天员的年龄同样大,那么三人的年龄总和是159-10-11=138岁
张陆:138÷3=46(岁)
邓清明:46+10=56(岁)
费俊龙:46+11=57(岁)
答:张陆46岁,邓清明56岁,费俊龙57岁。
本题考查用假设法解决问题的能力,理解图示是解题的关键。
(南通卷)江苏省南通市2023-2024学年六年级上学期期末考试质量调研数学试卷二(苏教版): 这是一份(南通卷)江苏省南通市2023-2024学年六年级上学期期末考试质量调研数学试卷二(苏教版),共17页。试卷主要包含了6-÷1,5倍B.一根绳子长1,5千米,5×2,25%×2等内容,欢迎下载使用。
江苏省苏州市2023-2024学年六年级上学期数学期中质量调研试卷二(苏教版): 这是一份江苏省苏州市2023-2024学年六年级上学期数学期中质量调研试卷二(苏教版),共3页。试卷主要包含了11),4吨),4万人,男志愿者比女志愿者多,2分米,25;45∶2;22,6=108等内容,欢迎下载使用。
江苏省南通市2023-2024学年六年级上学期数学期中质量调研试卷一(苏教版): 这是一份江苏省南通市2023-2024学年六年级上学期数学期中质量调研试卷一(苏教版),共4页。试卷主要包含了11),5∶1,4厘米,宽4厘米,高85毫米,6×25=15,5厘米,6×8等内容,欢迎下载使用。