- 期末高频试题必杀(45题)-2023-2024学年九年级数学上册《同步考点解读•专题训练》(北师大版) 试卷 0 次下载
- 期末高频压轴必杀题-2023-2024学年九年级数学上册《同步考点解读•专题训练》(北师大版) 试卷 0 次下载
- 专题5.1 投影(能力提升)-2023-2024学年九年级数学上册《同步考点解读•专题训练》(北师大版) 试卷 0 次下载
- 专题5.2 视图(能力提升)-2023-2024学年九年级数学上册《同步考点解读•专题训练》(北师大版) 试卷 0 次下载
- 专题6.1 反比例函数综合(能力提升)(原卷+解析版)-2023-2024学年九年级数学上册《同步考点解读•专题训练》(北师大版) 试卷 0 次下载
专题6.2 反比例函数应用(能力提升)(原卷+解析版)-2023-2024学年九年级数学上册《同步考点解读•专题训练》(北师大版)
展开(1)求直线AB的表达式;
(2)将直线AB向上平移后与反比例函数图象在第一象限内交于点C,且△ABC的面积为18,求平移后的直线的表达式.
2.如图,已知一次函数y1=k1x+b的图象与x轴、y轴分别交于A、B两点,与反比例函数y2=的图象分别交于C、D两点,点D(2,﹣3),点B是线段AD的中点.
(1)求一次函数y1=k1x+b与反比例函数y2=的解析式;
(2)求△COD的面积;
(3)直接写出k1x+b﹣≥0时自变量x的取值范围.
(4)动点P(0,m)在y轴上运动,当|PC﹣PD|的值最大时,求点P的坐标.
3.如图,已知反比例函数y=(x>0)的图象与反比例函数y=(x<0)的图象关于y轴对称,A(1,4),B(4,m)是函数y=(x>0)图象上的两点,连接AB,点C(﹣2,n)是函数y=(x<0)图象上的一点,连接AC,BC.
(1)求m,n的值;
(2)求AB所在直线的表达式;
(3)求△ABC的面积.
4.如图,一次函数y=x+1的图象与反比例函数y=(x>0)的图象交于点A(a,3),与y轴交于点B.
(1)求a,k的值;
(2)直线CD过点A,与反比例函数图象交于点C,与x轴交于点D,AC=AD,连接CB.
①求△ABC的面积;
②点P在反比例函数的图象上,点Q在x轴上,若以点A,B,P,Q为顶点的四边形是平行四边形,请求出所有符合条件的点P坐标.
5.如图(1),正方形ABCD顶点A、B在函数y=(k>0)的图象上,点C、D分别在x轴、y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变.
(1)若点A的坐标为(4,7),求正方形ABCD的面积;
(2)如图(2),当k=8时,求B′D′的长;
(3)当变化的正方形ABCD与(2)中的正方形A′B′C′D′有重叠部分时,求k的取值范围.
6.已知如图,直线y1=k1x+b与双曲线y2=的图象相交于A(2,﹣3)、B(﹣3,m)两点.
(1)求直线和双曲线的解析式.
(2)连接OA、OB,已知点P在x轴上,且S△PBO=2S△ABO,求点P的坐标.
(3)直线AB与x轴交于点C,在y轴上是否存在一点D,使△BCD的周长最小?若存在,求出点D的坐标;若不存在,请说明理由.
7.如图1,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡.改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如表
(1)把表中(x,y)的各组对应值作为点的坐标,在图2的坐标系中描出相应的点,用平滑曲线连接这些点;
(2)观察所画的图象,猜测y与x之间的函数关系,求出函数关系式;
(3)当砝码的质量为24g时,活动托盘B与点O的距离是多少?
8.背景:点A在反比例函数y=(k>0)的图象上,AB⊥x轴于点B,AC⊥y轴于点C,分别在射线AC,BO上取点D,E,使得四边形ABED为正方形.如图1,点A在第一象限内,当AC=4时,小李测得CD=3.
探究:通过改变点A的位置,小李发现点D,A的横坐标之间存在函数关系.请帮助小李解决下列问题.
(1)求k的值.
(2)设点A,D的横坐标分别为x,z,将z关于x的函数称为“Z函数”.如图2,小李画出了x>0时“Z函数”的图象.
①求这个“Z函数”的表达式.
②补画x<0时“Z函数”的图象,并写出这个函数的性质(两条即可).
③过点(3,2)作一直线,与这个“Z函数”图象仅有一个交点,求该交点的横坐标.
9.如图1,平面直角坐标系xOy中,A(4,3),反比例函数y=(k>0)的图象分别交矩形ABOC的两边AC,AB于E、F两点(E、F不与A重合),沿着EF将矩形ABOC折叠使A、D两点重合.
(1)AE= 4﹣ (用含有k的代数式表示);
(2)如图2,当点D恰好落在矩形ABOC的对角线BC上时,求CE的长度;
(3)若折叠后,△ABD是等腰三角形,求此时点D的坐标.
10.如图1,平面直角坐标系xOy中,A(﹣4,3),反比例函数y=(k<0)的图象分别交矩形ABOC的两边AC,BC于E,F(E,F不与A重合),沿着EF将矩形ABOC折叠使A,D重合.
(1)①如图2,当点D恰好在矩形ABOC的对角线BC上时,求CE的长;
②若折叠后点D落在矩形ABOC内(不包括边界),求线段CE长度的取值范围.
(2)若折叠后,△ABD是等腰三角形,请直接写出此时点D的坐标.
11.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:
(1)求0到2小时期间y随x的函数解析式;
(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?
12.为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:
(1)药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?
(2)研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?
(3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?
13.矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.
(1)当点F运动到边BC的中点时,求点E的坐标;
(2)连接EF,求∠EFC的正切值;
(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.
14.如图,在平面直角坐标系中,直线EF交x,y轴子点F,E,交反比例函数y=(x>0)图象于点C,D,OE=OF=5,以CD为边作矩形ABCD,顶点A与B恰好落在y轴与x轴上.
(1)若矩形ABCD是正方形,求CD的长.
(2)若AD:DC=2:1,求k的值.
15.如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴上,顶点C在y轴上,D是BC的中点,过点D的反比例函数图象交AB于E点,连接DE.若OD=5,OC=3.
(1)求过点D的反比例函数的解析式;
(2)求△DBE的面积;
(3)x轴上是否存在点P使△OPD为直角三角形?若存在,请求出P点的坐标;若不存在,请说明理由.
专题6.2 反比例函数应用(能力提升)
1.如图,在平面直角坐标系xOy中,直线AB:y=kx﹣2与y轴相交于点A,与反比例函数y=在第一象限内的图象相交于点B(m,2).
(1)求直线AB的表达式;
(2)将直线AB向上平移后与反比例函数图象在第一象限内交于点C,且△ABC的面积为18,求平移后的直线的表达式.
【解答】解:(1)∵点B(m,2)在的图象上,
∴,∴m=4.
∴点B(4,2).
把点B(4,2)代入y=kx﹣2,
得:4k﹣2=2,
∴k=1.
∴直线AB的表达式为:y=x﹣2.
(2)设平移后的直线表达式为:y=x+b.
记它与y轴的交点为D,则点D(0,b).
又 点A(0,﹣2).
∴AD=b+2.
联结BD.
∵CD∥AB.
∴S△ABD=S△ABC=18.
即:.
∴b=7.
∴平移后的直线表达式为:y=x+7.
2.如图,已知一次函数y1=k1x+b的图象与x轴、y轴分别交于A、B两点,与反比例函数y2=的图象分别交于C、D两点,点D(2,﹣3),点B是线段AD的中点.
(1)求一次函数y1=k1x+b与反比例函数y2=的解析式;
(2)求△COD的面积;
(3)直接写出k1x+b﹣≥0时自变量x的取值范围.
(4)动点P(0,m)在y轴上运动,当|PC﹣PD|的值最大时,求点P的坐标.
【解答】解:(1)∵点D(2,﹣3)在反比例函数y2=的图象上,
∴k2=2×(﹣3)=﹣6,
∴y2=;
如图,作DE⊥x轴于E,
∵D(2,﹣3),点B是线段AD的中点,
∴A(﹣2,0),
∵A(﹣2,0),D(2,﹣3)在y1=k1x+b的图象上,
,
解得k1=﹣,b=﹣,
∴;
(2)由,解得,,
∴C(﹣4,),
∴S△COD=S△AOC+S△AOD=×2×+×2×3=;
(3)由图可得,当k1x+b﹣≥0时,x≤﹣4或0<x≤2.
(4)如图,作C(﹣4,)关于y轴的对称点C'(4,),延长C'D交y轴于点P,
∴由C'和D的坐标可得,直线C'D为,
令x=0,则y=﹣,
∴当|PC﹣PD|的值最大时,点P的坐标为(0,).
3.如图,已知反比例函数y=(x>0)的图象与反比例函数y=(x<0)的图象关于y轴对称,A(1,4),B(4,m)是函数y=(x>0)图象上的两点,连接AB,点C(﹣2,n)是函数y=(x<0)图象上的一点,连接AC,BC.
(1)求m,n的值;
(2)求AB所在直线的表达式;
(3)求△ABC的面积.
【解答】解:(1)因为点A、点B在反比例函数y=(x>0)的图象上,
∴k1=1×4=4,
∴m×4=k1=4,
∴m=1
∵反比例函数y=(x>0)的图象与反比例函数y=(x<0)的图象关于y轴对称.
∴k2=﹣k1=﹣4
∴﹣2×n=﹣4,
∴n=2
(2)设直线AB所在的直线表达式为y=kx+b
把A(1,4),B(4,1)代入,得
解得
∴AB所在直线的表达式为:y=﹣x+5
(3)如图所示:过点A、B作x轴的平行线,过点C、B作y轴的平行线,它们的交点分别是E、F、B、G.
∴四边形EFBG是矩形.
则AF=3,BF=3,AE=3,EC=2,CG=1,GB=6,EG=3
∴S△ABC=S矩形EFBG﹣S△AFB﹣S△AEC﹣S△CBG
=BG×EG﹣AF×FB﹣AE×EC﹣BG×CG
=18﹣﹣3﹣3
=
4.如图,一次函数y=x+1的图象与反比例函数y=(x>0)的图象交于点A(a,3),与y轴交于点B.
(1)求a,k的值;
(2)直线CD过点A,与反比例函数图象交于点C,与x轴交于点D,AC=AD,连接CB.
①求△ABC的面积;
②点P在反比例函数的图象上,点Q在x轴上,若以点A,B,P,Q为顶点的四边形是平行四边形,请求出所有符合条件的点P坐标.
【解答】解:(1)把x=a,y=3代入y=x+1得,
,
∴a=4,
把x=4,y=3代入y=得,
3=,
∴k=12;
(2)∵点A(4,3),D点的纵坐标是0,AD=AC,
∴点C的纵坐标是3×2﹣0=6,
把y=6代入y=得x=2,
∴C(2,6),
①如图1,
作CD⊥x轴于D,交AB于E,
当x=2时,y==2,
∴E(2,2),
∵C(2,6),
∴CE=6﹣2=4,
∴xA==8;
②如图2,
当AB是对角线时,即:四边形APBQ是平行四边形,
∵A(0,1),B(4,3),点Q的纵坐标为0,
∴yP=1+3﹣0=4,
当y=4时,4=,
∴x=3,
∴P(3,4),
当AB为边时,即:四边形ABQP是平行四边形(图中的▱ABQ′P′),
由yQ﹣yB=yP′﹣yA得,
0﹣1=yP′﹣3,
∴yP′=2,
当y=2时,x==6,
∴P′(6,2),
综上所述:P(3,4)或(6,2).
5.如图(1),正方形ABCD顶点A、B在函数y=(k>0)的图象上,点C、D分别在x轴、y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变.
(1)若点A的坐标为(4,7),求正方形ABCD的面积;
(2)如图(2),当k=8时,求B′D′的长;
(3)当变化的正方形ABCD与(2)中的正方形A′B′C′D′有重叠部分时,求k的取值范围.
【解答】解:(1)如图(1),过点A作AE⊥y轴于点E,则∠AED=90°,
∵点A的坐标为(4,7),
∴AE=4,OE=7,
∵四边形ABCD为正方形,
∴AD=DC,∠ADC=90°,
∴∠ODC+∠EDA=90°.
∵∠ODC+∠OCD=90°,
∴∠EDA=∠OCD,
在△AED和△DOC中,
,
∴△AED≌△DOC(AAS),
∴DE=OC,OD=AE=4,
∴OC=DE=OE﹣OD=3,
根据勾股定理得,CD2=OC2+OD2=25,
∴正方形ABCD的面积为25;
(2)如图(2),过点A'作A′M⊥y轴于M,过点B'作B′N⊥x轴于点N,
设OD′=a,OC′=b,则D'(0,a),
同(1)的方法得,△B′C′N≌△C′D′O≌△D'A'M'(AAS),
∴C′N=OD′=A′M=a,B′N=C′O=D′M=b,
∴A′(a,a+b),B′(a+b,b),
∵点A′、B′在反比例函数y=的图象上,
∴a(a+b)=b(a+b)=8,
∴a=b=2或a=b=﹣2(舍去),
∴B′的坐标为(4,2),D'(0,2),
∴B'D'==4,
即B'D'的长为4;
(3)设直线A′B′的解析式为y=mx+n,
把A′(2,4),B′(4,2)代入得
,
解得,
∴直线A′B′解析式为y=﹣x+6,
同样可求得直线C′D′解析式为y=﹣x+2,
由(2)可知△OCD是等腰直角三角形,
设点A的坐标为(m,2m),点D坐标为(0,m),
当A点在直线C′D′上时,则2m=﹣m+2,解得m=,
此时点A的坐标为(,),
∴k=×=;
当点D在直线A′B′上时,有m=6,此时点A的坐标为(6,12),
∴k=6×12=72;
综上可知:当变化的正方形ABCD与(2)中的正方形A′B′C′D′有重叠部分时,k的取值范围为≤k≤72.
6.已知如图,直线y1=k1x+b与双曲线y2=的图象相交于A(2,﹣3)、B(﹣3,m)两点.
(1)求直线和双曲线的解析式.
(2)连接OA、OB,已知点P在x轴上,且S△PBO=2S△ABO,求点P的坐标.
(3)直线AB与x轴交于点C,在y轴上是否存在一点D,使△BCD的周长最小?若存在,求出点D的坐标;若不存在,请说明理由.
【解答】解:(1)∵点A(2,﹣3)在双曲线y2=上,
∴k2=2×(﹣3)=﹣6,
∴双曲线的解析式为y2=﹣,
∵点B(﹣3,m)在双曲线y2=﹣上,
∴﹣3m=﹣6,
∴m=2,
∴B(﹣3,2),
∵点A(2,﹣3),B(﹣3,2)在直线y1=k1x+b上,
∴,
∴,
∴直线AB的解析式为y1=﹣x﹣1;
(2)如图1,
记直线AB与x轴相交于点C,
由(1)知,B(﹣3,2),直线AB的解析式为y1=﹣x﹣1,
∴C(﹣1,0),
∴S△ABO=S△AOC+S△BOC=OC×|yA|+OC×|yB|=×1×(3+2)=,
设点P(n,0),
∴S△PBO=OP×|yB|=|n|×2=|n|,
∵S△PBO=2S△ABO,∴|n|=2×=5,
∴n=±5,
∴P(﹣5,0)或(5,0);
(3)如图2,作出点C关于y轴的对称点C'(1,0),
∵B(﹣3,2),
∴直线BC'的解析式为y=﹣x+,
∴D(0,).
7.如图1,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡.改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如表
(1)把表中(x,y)的各组对应值作为点的坐标,在图2的坐标系中描出相应的点,用平滑曲线连接这些点;
(2)观察所画的图象,猜测y与x之间的函数关系,求出函数关系式;
(3)当砝码的质量为24g时,活动托盘B与点O的距离是多少?
【解答】解:(1)如图所示:
(2)由图象猜测y与x之间的函数关系为反比例函数,
∴设 y=(k≠0),
把x=10,y=30代入得:k=300,
∴y=,
将其余各点代入验证均适合,
∴y与x的函数关系式为:y=;
(3)把y=24代入y= 得:x=12.5,
∴当砝码的质量为24g时,活动托盘B与点O的距离是12.5cm.
8.背景:点A在反比例函数y=(k>0)的图象上,AB⊥x轴于点B,AC⊥y轴于点C,分别在射线AC,BO上取点D,E,使得四边形ABED为正方形.如图1,点A在第一象限内,当AC=4时,小李测得CD=3.
探究:通过改变点A的位置,小李发现点D,A的横坐标之间存在函数关系.请帮助小李解决下列问题.
(1)求k的值.
(2)设点A,D的横坐标分别为x,z,将z关于x的函数称为“Z函数”.如图2,小李画出了x>0时“Z函数”的图象.
①求这个“Z函数”的表达式.
②补画x<0时“Z函数”的图象,并写出这个函数的性质(两条即可).
③过点(3,2)作一直线,与这个“Z函数”图象仅有一个交点,求该交点的横坐标.
【解答】解:(1)∵AC=4,CD=3,
∴AD=AC﹣CD=1,
∵四边形ABED是正方形,
∴AB=1,
∵AC⊥y轴,AB⊥x轴,
∴∠ACO=∠COB=∠OBA=90°,
∴四边形ABOC是矩形,
∴OB=AC=4,
∴A(4,1),
∴k=4.
(2)①由题意,A(x,x﹣z),
∴x(x﹣z)=4,
∴z=x﹣.
②图像如图所示.
性质1:x>0时,y随x的增大而增大.
性质2:图像是中心对称图形.
③设直线的解析式为z=kx+b,
把(3,2)代入得到,2=3k+b,
∴b=2﹣3k,
∴直线的解析式为z=kx+2﹣3k,
由,消去z得到,(k﹣1)x2+(2﹣3k)x+4=0,
当k≠1时,当Δ=0时,(2﹣3k)2﹣4(k﹣1)×4=0,
解得k=或2,
当k=时,方程为x2﹣x+4=0,解得x1=x2=6.
当k=2时,方程为x2﹣4x+4=0,解得x1=x2=2.
当k=1时.方程的解为x=4,符合题意,
另外直线x=3,也符合题意,此时交点的横坐标为3,
综上所述,满足条件的交点的横坐标为2或3或4或6.
9.如图1,平面直角坐标系xOy中,A(4,3),反比例函数y=(k>0)的图象分别交矩形ABOC的两边AC,AB于E、F两点(E、F不与A重合),沿着EF将矩形ABOC折叠使A、D两点重合.
(1)AE= 4﹣ (用含有k的代数式表示);
(2)如图2,当点D恰好落在矩形ABOC的对角线BC上时,求CE的长度;
(3)若折叠后,△ABD是等腰三角形,求此时点D的坐标.
【解答】解:(1)∵四边形ABOC是矩形,且A(4,3),
∴AC=4,OC=3,
∵点E在反比例函数y=上,
∴E(,3),
∴CE=,
∴AE=4﹣;
故答案为:4﹣;
(2)如图2,∵A(4,3),
∴AC=4,AB=3,
∴,
∴点F在y=上,
∴F(4,),
∴=,
∴=,
∵∠A=∠A,
∴△AEF∽△ACB,
∴∠AEF=∠ACB,
∴EF∥BC,
∴∠FED=∠CDE,
连接AD交EF于M点,
∴△AEF≌△DEF,
∴∠AEM=∠DEM,AE=DE,
∴∠FED=∠CDE=∠AEF=∠ACB,
∴CE=DE=AE=AC=2;
(3)过D点作DN⊥AB,
①当BD=AD时,如图3,有∠AND=90°,AN=BN=AB=,
∴∠DAN+∠ADN=90°,
∵∠DAN+∠AFM=90°,
∴∠ADN=∠AFM,
∴tan∠ADN=tan∠AFM=,
∴,
∵AN=,
∴DN=,
∴D(4﹣,),即D(,);
②当AB=AD=3时,如图4,
在Rt△ADN中,tan∠ADN=tan∠AFM=,
∴,
∴AN=AD==,
∴BN=3﹣AN=3﹣=,
∵DN=AN==,
∴D(4﹣,),即D(,);
③当AB=BD时,△AEF≌△DEF,
∴DF=AF,
∴DF+BF=AF+BF,即DF+BF=AB,
∴DF+BF=BD,
此时D、F、B三点共线且F点与B点重合,不符合题意舍去,
∴AB≠BD,
综上所述,所求D点坐标为(,)或(,).
10.如图1,平面直角坐标系xOy中,A(﹣4,3),反比例函数y=(k<0)的图象分别交矩形ABOC的两边AC,BC于E,F(E,F不与A重合),沿着EF将矩形ABOC折叠使A,D重合.
(1)①如图2,当点D恰好在矩形ABOC的对角线BC上时,求CE的长;
②若折叠后点D落在矩形ABOC内(不包括边界),求线段CE长度的取值范围.
(2)若折叠后,△ABD是等腰三角形,请直接写出此时点D的坐标.
【解答】解:(1)①如图2中,连接AD交EF于H.
∵四边形ABOC是矩形,A(﹣4,3),
∴∠A=90°,OB=AC=4,AB=OC=3,
∵E,F在y=时,
∴可以假设E(,3),F(﹣4,),
∴AE=4+,AF=3+,
∴AE:AF=4:3,
∵AC:BC=4:3,
∴=,
∵∠EAF=∠CAB,
∴△EAF∽△CAB,
∴∠AEF=∠ACB,
∴EF∥BC,
∵A,D关于EF对称,点D落在BC上,
∴EF垂直平分线段AD,
∴AH=DH,
∵EF∥BC,
∴=,
∴AE=EC=2.
②如图3中,当点D落在OB上时,连接AD交EF于H.
∵∠EAF=∠ABD=90°,∠AEF=∠BAD,
∴△AEF∽△BAD,
∴=,则==,
∴BD=AB÷=,
设AF=x,则FB=3﹣x,FD=AF=x
在Rt△BDF中,∵FB2+BD2=DF2,
∴(3﹣x)2+()2=x2,
解得x=,
∴AF=,
∴AE=AF=,
∴EC=4﹣AE=4﹣=,
∴<CE<4时,折叠后点D落在矩形ABOC内(不包括边界),
线段CE长度的取值范围为:<CE<4.
(2)∵△ABD是等腰三角形,F与B不重合,
∴AB≠BD.
①如图4中,当AD=BD时,∠BAD=∠ABD,
由(1)可知∠BAD=∠AEF,
∴∠ABD=∠AEF.
作DM∥OB交AB于M,交OC于N.则DM⊥AB,MN=AC=4,
∴∠BMD=∠EAF=90°,BM=AB=,
∴△AEF∽△MBD,
∴=,则==,
∴MD=BM÷=,
∴DN=MN﹣MD=4﹣=,
∴D(﹣,).
②如图5中,当AD=AB时,作DM∥OB交AB于M,交OC于N.则DM⊥AB,MN=AC=4,
∴∠AMD=∠EAF=90°,
由(1)可得∠BAD=∠AEF,
∴△AEF∽△MAD,
∴=,则==,
设AM=4a,则MD=3a,
在Rt△MAD中,∵AM2+DM2=AD2,
∴(4a)2+(3a)2=32,
∴a=,
∴AM=,MD=,
∴BM=AB=AM=3﹣=,DN=MN﹣MD=4﹣=,
∴D(﹣,).
综上所述,满足条件的点D的坐标为(﹣,)或(﹣,).
11.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:
(1)求0到2小时期间y随x的函数解析式;
(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?
【解答】解:(1)设函数解析式为y=kx+b,代入(0,10),和(2,20),得
,解得,
0到2小时期间y随x的函数解析式y=5x+10;
(2)把y=15代入y=5x+10,即5x+10=15,解得x1=1,
把y=15代入y=,即15=,解得x2=16,
∴16﹣1=15,
答:恒温系统在一天内保持大棚内温度不低于15℃的时间有15小时.
12.为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:
(1)药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?
(2)研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?
(3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?
【解答】解:(1)设药物燃烧时y关于x的函数关系式为y=k1x(k1>0)代入(8,6)为6=8k1
∴k1=
设药物燃烧后y关于x的函数关系式为(k2>0)代入(8,6)为6=
∴k2=48
∴药物燃烧时y关于x的函数关系式为(0≤x≤8)药物燃烧后y关于x的函数关系式为(x>8)
(2)结合实际,令中y≤1.6得x≥30
即从消毒开始,至少需要30分钟后学生才能进入教室.
(3)把y=3代入,得:x=4
把y=3代入,得:x=16
∵16﹣4=12,12>10,
所以这次消毒是有效的.
13.矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.
(1)当点F运动到边BC的中点时,求点E的坐标;
(2)连接EF,求∠EFC的正切值;
(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.
【解答】解:(1)∵OA=3,OB=4,
∴B(4,0),C(4,3),
∵F是BC的中点,
∴F(4,),
∵F在反比例函数y=的图象上,
∴k=4×=6,
∴反比例函数的解析式为y=,
∵E点的纵坐标为3,
∴E(2,3);
(2)∵F点的横坐标为4,
∴F(4,),
∴CF=BC﹣BF=3﹣=
∵E的纵坐标为3,
∴E(,3),
∴CE=AC﹣AE=4﹣=,
在Rt△CEF中,tan∠EFC==,
(3)如图,由(2)知,CF=,CE=,,
过点E作EH⊥OB于H,
∴EH=OA=3,∠EHG=∠GBF=90°,
∴∠EGH+∠HEG=90°,
由折叠知,EG=CE,FG=CF,∠EGF=∠C=90°,
∴∠EGH+∠BGF=90°,
∴∠HEG=∠BGF,
∵∠EHG=∠GBF=90°,
∴△EHG∽△GBF,
∴=,
∴,
∴BG=,
在Rt△FBG中,FG2﹣BF2=BG2,
∴()2﹣()2=,
∴k=,
∴反比例函数解析式为y=.
14.如图,在平面直角坐标系中,直线EF交x,y轴子点F,E,交反比例函数y=(x>0)图象于点C,D,OE=OF=5,以CD为边作矩形ABCD,顶点A与B恰好落在y轴与x轴上.
(1)若矩形ABCD是正方形,求CD的长.
(2)若AD:DC=2:1,求k的值.
【解答】解:(1)如图1中,
∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠ADC=∠BCD=90°,
∴∠ADE=∠BCF=90°,
∵OE=OF=5,
∵∠EOF=90°,
∴∠OEF=∠OFE=45°,FE=10,
∴CD=DE=CF=.
(2)如图2中,作DG⊥OE于G.
∵四边形ABCD是矩形,
∴AD=BC,
∵AD=DE,BC=CF,且2CD=AD,
∴2CD=DE=CF,
∵DE+CD+FC=EF,
∴DE=EF=4,
在Rt△ADE中,DG=EG=CG=DE=2,
∴OG=OE﹣EG=5﹣2=3,
∴D(2,3),
∵反比例函数y=(x>0)图象经过点D,
∴k=12.
15.如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴上,顶点C在y轴上,D是BC的中点,过点D的反比例函数图象交AB于E点,连接DE.若OD=5,OC=3.
(1)求过点D的反比例函数的解析式;
(2)求△DBE的面积;
(3)x轴上是否存在点P使△OPD为直角三角形?若存在,请求出P点的坐标;若不存在,请说明理由.
【解答】解:
(1)∵四边形OABC为矩形,
∴△OCD为直角三角形,
∵OD=5,OC=3,
∴CD=4,
∴D(4,3),
设反比例函数解析式为y=,
∵点D在反比例函数图象上,
∴k=4×3=12,
∴反比例函数解析式为y=;
(2)∵D为BC的中点,且BC=2CD=8,
∴B(8,3),
∴E点横坐标为8,且E在反比例函数图象上,
在y=中,令x=8,可得y=,
∴E(8,),
∴BE=3﹣=,且BD=4,
∴S△DBE=BD•BE=×4×=3;
(3)∵P在x轴上,
∴可设P(t,0),
∵∠DOA为锐角,
∴当△OPD为直角三角形时,有∠DPO=90°或∠ODP=90°,且点P在x轴正半轴上,
①当∠DPO=90°时,则DP⊥x轴,此时P点坐标为(4,0);
②当∠ODP=90°时,由D(4,3),P(t,0),
∴PD2=(t﹣4)2+32=t2﹣8t+25,且OD2=52=25,OP2=t2,
由勾股定理可得PD2+OD2=OP2,即t2﹣8t+25+25=t2,解得t=,
∴P(,0);
综上可知存在满足条件的点P,其坐标为(4,0)或(,0).
x(cm)
10
15
20
25
30
y(g)
30
20
15
12
10
x(cm)
10
15
20
25
30
y(g)
30
20
15
12
10
专题6.1 反比例函数综合(能力提升)(原卷+解析版)-2023-2024学年九年级数学上册《同步考点解读•专题训练》(北师大版): 这是一份专题6.1 反比例函数综合(能力提升)(原卷+解析版)-2023-2024学年九年级数学上册《同步考点解读•专题训练》(北师大版),文件包含湖南师大附中数学附中3次pdf、湖南师大附中数学答案附中3次pdf等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
专题5.2 视图(能力提升)-2023-2024学年九年级数学上册《同步考点解读•专题训练》(北师大版): 这是一份专题5.2 视图(能力提升)-2023-2024学年九年级数学上册《同步考点解读•专题训练》(北师大版),文件包含湖南师大附中数学附中3次pdf、湖南师大附中数学答案附中3次pdf等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
专题5.1 投影(能力提升)-2023-2024学年九年级数学上册《同步考点解读•专题训练》(北师大版): 这是一份专题5.1 投影(能力提升)-2023-2024学年九年级数学上册《同步考点解读•专题训练》(北师大版),文件包含湖南师大附中数学附中3次pdf、湖南师大附中数学答案附中3次pdf等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。