|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024届广东省东莞市第四高级中学高三上学期8月月考数学试题含答案
    立即下载
    加入资料篮
    2024届广东省东莞市第四高级中学高三上学期8月月考数学试题含答案01
    2024届广东省东莞市第四高级中学高三上学期8月月考数学试题含答案02
    2024届广东省东莞市第四高级中学高三上学期8月月考数学试题含答案03
    还剩12页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024届广东省东莞市第四高级中学高三上学期8月月考数学试题含答案

    展开
    这是一份2024届广东省东莞市第四高级中学高三上学期8月月考数学试题含答案,共15页。试卷主要包含了单选题,多选题,填空题,双空题,解答题等内容,欢迎下载使用。

    一、单选题
    1.已知命题p:,,则为( )
    A.,B.,
    C.,D.,
    【答案】C
    【分析】全称命题的否定定义可得.
    【详解】根据全称命题的否定,:,.
    故选:C.
    2.设集合,,则( )
    A.B.
    C.D.
    【答案】A
    【分析】解一元二次不等式化简集合B,再利用交集的定义计算作答.
    【详解】解不等式得:,即,而,
    所以.
    故选:A
    3.若,,则( )
    A.B.
    C.D.
    【答案】A
    【分析】由不等式的性质判断A、B、D的正误,应用特殊值法的情况判断C的正误.
    【详解】由,则,A正确;,B错误;,D错误.
    当时,,C错误;
    故选:A.
    4.设随机变量x服从正态分布,若,则( )
    A.1B.2C.3D.4
    【答案】C
    【分析】由随机变量x服从正态分布,可得正态曲线的对称轴为,然后对称关系可求得结果
    【详解】解:因为随机变量x服从正态分布,
    所以正态曲线的对称轴为,
    因为,所以,得,
    故选:C
    5.随机变量的分布列如下表所示,则
    A.B.C.D.
    【答案】D
    【分析】由随机变量的分布列的性质,求得,再由期望的计算公式,求得,进而求得,得到答案.
    【详解】由随机变量的分布列的性质,可得,解得,
    则,
    所以.
    故选:D.
    【点睛】本题主要考查了随机变量的分布列的性质,以及随机变量的期望的求解,其中解答中熟记分布列的性质,以及数学期望的计算公式是解答的关键,着重考查推理与运算能力.
    6.展开式中的常数项为( )
    A.B.C.20D.40
    【答案】D
    【分析】求出展开式中和的系数,与中相应项相乘相加可得.
    【详解】由题意常数项为:,
    故选:D.
    【点睛】本题考查二项式定理,考查求展开式中某一项系数.注意本题是两个多项式相乘,因此所求系数要由多项式乘法法则计算.
    7.对于任意的实数,定义表示不超过的最大整数,例如,,,那么“”是“”的( )
    A.充分不必要条件B.必要不充分条件
    C.充要条件D.既不充分也不必要条件
    【答案】B
    【分析】根据充分必要性分别判断即可.
    【详解】若,则可设,则,,其中,
    ,,即“”能推出“”;
    反之,若,,满足,但,,即“”推不出“”,
    所以“”是“”必要不充分条件,
    故选:B.
    8.组合恒等式,可以利用“算两次”的方法证明:分别求和的展开式中的系数.前者的展开式中的系数为;后者的展开式中的系数为.因为,所以两个展开式中的系数相等,即.请用“算两次”的方法化简式子
    A.B.C.D.
    【答案】A
    【分析】引入等式,分别计算的系数.
    【详解】因为,
    在中的系数为,
    又,
    这个式子中的系数可由前一个括号中一项乘以后一个括号中的相应项得出,即,
    两个式子中的系数应相等,所以.
    故选:A.
    【点睛】本题考查二项式定理的应用,考查“算两次”的方法证明组合恒等式.解题关键是把组合恒等式两边的数看作出二项展开式中某一项的系数,这个二项式用一种方法展开得一个算法的系数,用另一种方法展开后又得到该项系数的另一种算法,两种算法的结果相等,即得结论.
    二、多选题
    9.下列结论正确的是( )
    A.若两个具有线性相关关系的变量的相关性越强,则相关系数的绝对值越接近于1
    B.样本的回归直线至少经过其中一个样本点
    C.在回归方程中,当解释变量x每增加1个单位时,预报变量平均增加0.2个单位
    D.在线性回归模型中,用相关指数刻画拟合效果,的值越小,模型的拟合效果越好
    【答案】AC
    【分析】根据相关系数的定义可判断A;由回归直线方程的性质可判断B、C;由相关指数与拟合效果的关系判断D,进而可得正确选项.
    【详解】对于A:两个具有线性相关关系的变量的相关性越强,则相关系数的绝对值越接近于1,故选项A正确;
    对于B:样本的回归直线不一定经过其中一个样本点,一点经过样本中心点,故选项B不正确;
    对于C:在回归方程中,当解释变量x每增加1个单位时,预报变量平均增加0.2个单位,故选项C正确;
    对于D:用相关指数刻画拟合效果,的值越大,模型的拟合效果越好,故选项D不正确;
    故选:AC.
    10.下列不等关系成立的有( )
    A.B.C.D.
    【答案】BD
    【分析】A选项,根据的单调性得到;B选项,由单调性和中间值比较大小;C选项,由的单调性比较出大小;D选项,先利用对数换底公式变形,再结合比较出大小.
    【详解】A选项,因为在上单调递增,故,A错误;
    B选项,,故,B正确;
    C选项,因为在上单调递增,故,C错误;
    D选项,因为,
    由于,所以,即,D正确.
    故选:BD
    11.对数函数(且)与二次函数在同一坐标系内的图象不可能是( )
    A. B. C. D.
    【答案】BCD
    【分析】AB选项,从对数函数出发,推出,再判断二次函数,从开口方向和其中一根与1的比较,得到A可能,B不可能;CD选项,从对数函数出发,得到,再判断二次函数,也是从开口方向和其中一根与1的比较,得到CD均不可能.
    【详解】选项A,B中,由对数函数图象得,则二次函数中二次项系数,其对应方程的两个根为0,,选项A中,由图象得,从而,选项A可能;
    选项B中,由图象得,与相矛盾,选项B不可能.
    选项C,D中,由对数函数的图象得,则,二次函数图象开口向下,D不可能;
    选项C中,由图象与x轴的交点的位置得,与相矛盾,选项C不可能.
    故选:BCD.
    12.定义在R上的偶函数满足,当时,,则下列结论正确的是( )
    A.
    B.的一个周期为4
    C.的图象关于点对称
    D.
    【答案】ABD
    【分析】A选项,根据为偶函数,得到;B选项,变形得到,结合函数为偶函数,得到,B正确;C选项,先得到的图象关于轴对称,结合函数的一个周期为4得到答案;D选项,利用函数周期性和对称性求出答案.
    【详解】A选项,因为为偶函数,所以,
    故,A正确;
    B选项,因为,所以,
    即,
    又为偶函数,故,所以,
    故的一个周期为4,B正确;
    C选项,因为,所以的图象关于轴对称,
    又的一个周期为4,故的图象关于轴对称,C错误;
    D选项,因为,
    因为,所以,
    由B选项可知,的一个周期为4,

    ,D正确.
    故选:ABD
    三、填空题
    13.若函数,则的极大值点为 .
    【答案】2
    【分析】求导,得到的解,进而得到函数单调性,求出极大值点.
    【详解】,
    令,解得或6,
    当或时,,单调递增,
    当时,,单调递减,
    故在取得极大值,故极大值点为2.
    故答案为:2
    14.若,,,则的最小值为 .
    【答案】
    【分析】利用基本不等式“1”的妙用求出最小值.
    【详解】因为,,,
    所以,
    当且仅当,即时,等号成立,
    故答案为:
    15.一次函数在上单调递增,且,则 .
    【答案】
    【分析】设出一次函数的表达式,利用待定系数法解决.
    【详解】设,则,

    则.又在上单调递增,即,
    所以,,则.
    故答案为:
    四、双空题
    16.已知函数是定义域为的奇函数,则 ,关于的不等式的解集为 .
    【答案】 1
    【分析】根据题意,由函数为奇函数即可得到,然后求导即可得到,从而得到其单调性,由函数的单调性即可求解不等式.
    【详解】因为是奇函数,所以,
    则由的任意性可得,
    所以,则.
    因为,所以,则在上单调递减.
    由,得,
    则,解得.
    故答案为:;.
    五、解答题
    17.求值:
    (1);
    (2) .
    【答案】(1)3
    (2)10
    【分析】根据指对幂的运算规则计算.
    【详解】(1)

    (2)原式;
    综上,(1)原式=3;(2)原式=10.
    18.为了提高学生体育锻炼的积极性,某中学需要了解性别因素对本校学生体育锻炼的喜好是否有影响,为此对学生是否喜欢体育锻炼的情况进行调查,得到下表:
    在本次调查中,男生人数占总人数的,女生喜欢体育锻炼的人数占女生人数的.
    (1)求的值;
    (2)能否有的把握认为学生的性别与喜欢体育锻炼有关?
    【答案】(1)
    (2)没有的把握认为学生的性别与喜欢体育锻炼之间有关联.
    【分析】(1)根据题中所给数据比和表中数据直接求解;
    (2)补全上述列联表,利用独立性检验求解.
    【详解】(1)由题可知
    解得.
    (2)根据列联表及(1)中数据补全列联表,
    经计算得到.
    所以没有的把握认为学生的性别与喜欢体育锻炼之间有关联.
    19.给定函数,,,用表示,中的较大者,记为.
    (1)求函数的解析式并画出其图象;
    (2)对于任意的,不等式恒成立,求实数的取值范围.
    【答案】(1),作图见解析;
    (2).
    【分析】(1)根据题意,分类讨论,结合一元二次不等式的解法进行求解并画出图象即可;
    (2)构造新函数,利用分类讨论思想,结合二次函数的性质进行求解即可.
    【详解】(1)①当即时,,则,
    ②当即或时,,则,

    图象如下:
    (2)由(1)得,当时,,
    则在上恒成立等价于在上恒成立.
    令,,
    原问题等价于在上的最小值.
    ①当即时,在上单调递增,
    则,故.
    ②当即时,在上单调递减,在上单调递增,
    则,由时,,故不合题意.
    综上所述,实数的取值范围为.
    20.经过考察,某公司打算对两个项目进行投资,经测算,投资项目(百万元)与产生的经济效益之间满足:(百万元),投资项目与产生的项目经济效益之间满足:(百万元).
    (1)公司现有1200万资金可供投资,应如何分配资金使得投资收益总额最大;
    (2)若投资百万元的某项目产生的经济效益为百万元,设投资该项目的边际效应函数为,其边际效应值小于0时,不建议投资该项目,那么对项目与应如何投资,才能使得经济效益最好?
    【答案】(1)A、B项目各6百万,收益最大为3400万;(2)A、B项目各550万.
    【解析】(1)利用两种投资效益的和确定函数的解析式,利用二次函数配方法,得出结论;
    (2)利用投资边际效应函数,分别解不等式求两种投资方案投资额度的范围,即可得结论.
    【详解】(1)投资项目(百万元),则投资投资项目(百万元),
    投资收益总额
    ,时取最大值,
    即投资项目6百万,投资项目6百万,收益总额最大为万元.
    (2)若投资项目(百万元),则,解得,投资项目550万元,
    若投资项目(百万元),则,解得,应投资项目550万元.
    即两个项目各投资550万元时,经济效益最好.
    【点睛】本题考查函数在生产实际中的综合运用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化,属于中档题.
    21.水平相当的甲、乙两队在某次排球决赛比赛中相遇,决赛采用五局三胜制,胜者获得全部奖金.
    (1)求需要进行五局比赛才能结束的概率;
    (2)若前3局打成2∶1时,比赛因故终止.有人提议按2∶1分配奖金,请利用相关数学识解释这样分配是否合理?
    【答案】(1)
    (2)不合理,理由见解析
    【分析】(1)由进行五局比赛结束的情况为前四局{甲两胜,乙两胜,最后一局甲胜}、{甲两胜,乙两胜,最后一局乙胜},利用独立事件乘法公式、互斥事件加法求概率即可.
    (2)根据前3局2:1时,利用独立乘法公式求出胜2局者和胜1局者分别获胜的概率,即可判断分配是否合理.
    【详解】(1)由题意,任意一局甲胜概率为,乙胜的概率为,进行五局比赛结束,
    若第五局甲胜,则前四局{甲两胜,乙两胜},
    此时,
    若第五局乙胜,则前四局{甲两胜,乙两胜},
    此时,
    综上,需要进行四局比赛才能结束的概率为.
    (2)不合理,理由如下:
    前3局:若甲胜两局,乙胜一局,
    甲获胜的情况为{第4局甲胜}、{第4局乙胜,第5局甲胜},
    故此情况下,甲获胜的概率为,而乙获胜概率为,
    所以前3局胜2局者与胜1局者奖金分配应为,故题设分配不合理.
    22.已知函数.
    (1)若,求在处的切线方程;
    (2)若对任意的恒成立,求的取值范围.
    【答案】(1)
    (2)
    【分析】(1)利用导数的几何意义直接求解即可,
    (2)对求导后,再令,再求导后可判断在上单调递增,而,所以分和两种情况讨论即可.
    【详解】(1)若,则,
    所以
    所以,又,
    所以在处的切线方程为,即.
    (2)由题意知,令,所以,
    令,则
    所以在上单调递增,又,
    当,即时,,所以在上单调递增,
    即上单调递增,所以上单调递增,
    所以,
    所以在上单调递增,所以,符合题意;
    当,即时,令,解得,
    所以当时,,当时,,
    所以在上单调递减,在上单调递增,
    即在上单调递减,在上单调递增,
    所以当时,,
    所以在上单调递减,所以,不符合题意.
    综上,a的取值范围是.
    【点睛】关键点点睛:此题考查导数的综合应用,考查导数的几何意义,考查利用导数解决不等式恒成问题,第(1)问解题的关键是将问题转化为当时,,所以利用导数求的最小值即可,考查数学转化思想和计算能力,属于较难题.
    体育锻炼
    性别
    合计
    男生
    女生
    喜欢
    280
    不喜欢
    120
    合计
    0.05
    0.025
    0.010
    0.001
    3.841
    5.024
    6.635
    10.828
    体育锻炼
    性别
    合计
    男生
    女生
    喜欢
    280
    180
    460
    不喜欢
    120
    120
    240
    合计
    400
    300
    700
    相关试卷

    30,广东省东莞市东华高级中学2024届高三上学期第二次调研数学试题: 这是一份30,广东省东莞市东华高级中学2024届高三上学期第二次调研数学试题,共24页。

    2024届广东省东莞市东莞外国语学校高三上学期第四次月考数学试题含答案: 这是一份2024届广东省东莞市东莞外国语学校高三上学期第四次月考数学试题含答案,共17页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2024届广东省东莞市第四高级中学高三上学期9月月考数学试题含答案: 这是一份2024届广东省东莞市第四高级中学高三上学期9月月考数学试题含答案,共15页。试卷主要包含了单选题,多选题,填空题,双空题,解答题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024届广东省东莞市第四高级中学高三上学期8月月考数学试题含答案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map