第十章 概率、随机变量及其分布列-备考2024年高考数学专题测试模拟卷(新高考专用)
展开本试卷22小题,满分150分。考试用时120分钟
一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2023·吉林·统考二模)对于事件A与事件B,下列说法错误的是( )
A.若事件A与事件B互为对立事件,则P(A)+P(B)=1
B.若事件A与事件B相互独立,则P(AB)=P(A)P(B)
C.若P(A)+P(B)=1,则事件A与事件B互为对立事件
D.若P(AB)=P(A)P(B),则事件A与事件B相互独立
2.(2023·广东深圳·统考二模)从1,2,3,4,5中随机选取三个不同的数,若这三个数之积为偶数,则它们之和大于8的概率为( )
A.B.C.D.
3.(2023·山东烟台·统考二模)口袋中装有编号分别为1,2,3的三个大小和形状完全相同的小球,从中任取2个球,记取出的球的最大编号为,则( )
A.B.C.D.
4.(河北省唐山市2023届高三三模数学试题)假设有两箱零件,第一箱内装有5件,其中有2件次品;第二箱内装有10件,其中有3件次品.现从两箱中随机挑选1箱,然后从该箱中随机取1个零件,若取到的是次品,则这件次品是从第一箱中取出的概率为( )
A.B.C.D.
5.(福建省宁德市普通高中2023届高三质量检测数学试题)某地生产红茶已有多年,选用本地两个不同品种的茶青生产红茶.根据其种植经验,在正常环境下,甲、乙两个品种的茶青每500克的红茶产量(单位:克)分别为,且,其密度曲线如图所示,则以下结论错误的是( )
A.的数据较更集中
B.
C.甲种茶青每500克的红茶产量超过的概率大于
D.
6.(2023·辽宁·鞍山一中校联考模拟预测)某医用口罩生产厂家生产医用普通口罩、医用外科口罩、医用防护口罩三种产品,三种产品的生产比例如图所示,且三种产品中绑带式口罩的比例分别为90%,50%,40%.若从该厂生产的口罩中任选一个,则选到绑带式口罩的概率为( )
A.0.23B.0.47C.0.53D.0.77
7.(2023山东青岛一模)某次考试共有4道单选题,某学生对其中3道题有思路,1道题完全没有思路.有思路的题目每道做对的概率为0.8,没有思路的题目,只好任意猜一个答案,猜对的概率为0.25.若从这4道题中任选2道,则这个学生2道题全做对的概率为( )
A. 0.34B. 0.37C. 0.42D. 0.43
8.(2023四川成都模拟)年末,武汉岀现新型冠状病毒肺炎()疫情,并快速席卷我国其他地区,传播速度很快,因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大,武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从月日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人,在排查期间,一户口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”,设该家庭每个成员检测呈阳性的概率均为且相互独立,该家庭至少检测了个人才能确定为“感染高危户”的概率为,当时,最大,则( )
A. B. C. D.
二、多项选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。
9.(2023·广东惠州·统考二模)下列四个命题中为真命题的是( )
A.若随机变量服从二项分布,则
B.若随机变量服从正态分布,且,则
C.已知一组数据的方差是3,则的方差也是3
D.对具有线性相关关系的变量,其线性回归方程为,若样本点的中心为,则实数的值是4
10.(2023·浙江台州·统考二模)已知,随机变量的分布列为:
则( )
A.B.
C.D.
11(2023·河南安阳·安阳一中校联考模拟预测)立德中学举行“学习党代会,奋进新征程”交流会,共有6位老师、4位学生进行发言.现用抽签的方式决定发言顺序,事件表示“第k位发言的是学生”,则( )
A.B.
C.D.
12.(2023·广东湛江·统考二模)廉江红橙是广东省廉江市特产、中国国家地理标志产品.设廉江地区某种植园成熟的红橙单果质量(单位:g)服从正态分布,且,.下列说法正确的是( )
A.若从种植园成熟的红橙中随机选取1个,则这个红橙的质量小于167 g的概率为0.7
B.若从种植园成熟的红橙中随机选取1个,则这个红橙的质量在167 g~168 g的概率为0.05
C.若从种植园成熟的红橙中随机选取600个,则质量大于163 g的个数的数学期望为480
D.若从种植园成熟的红橙中随机选取600个,则质量在163 g~168 g的个数的方差为136.5
三、填空题:本大题共4小题,每小题5分,共20分。
13.(2023·辽宁丹东·统考二模)已知,,,那么____________.
14.(2023山东烟台一模)某企业的一批产品由一等品零件、二等品零件混装而成,每包产品均含有10个零件.小张到该企业采购,利用如下方法进行抽检:从该企业产品中随机抽取1包产品,再从该包产品中随机抽取4个零件,若抽取的零件都是一等品,则决定采购该企业产品;否则,拒绝采购.假设该企业这批产品中,每包产品均含1个或2个二等品零件,其中含2个二等品零件的包数占,则小张决定采购该企业产品的概率为______.
15.(2023·山东青岛·统考二模)某市高三年级男生的身高(单位:)近似服从正态分布,已知,若.写出一个符合条件的的值为__________.
16.(天津市2023届高三三模数学试题)现有4个红球和4个黄球,将其分配到甲、乙两个盒子中,每个盒子中4个球.甲盒子中有2个红球和2个黄球的概率为________;甲盒子中有3个红球和1个黄球,若同时从甲、乙两个盒子中取出个球进行交换,记交换后甲盒子中的红球个数为,的数学期望为,则________.
四、解答题:本大题共6小题,共70分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。
17.(2023·江苏·统考三模)综合素质评价是高考招生制度改革的内容之一.某高中采用多维评分的方式进行综合素质评价.下图是该校高三学生“运动与建康”评价结果的频率直方图,评分在区间[90,100),[70,90),[60,70),[50,60)上,分别对应为A,B,C,D四个等级.为了进一步引导学生对运动与健康的重视,初评获A等级的学生不参加复评,等级不变,对其余学生学校将进行一次复评.复评中,原获B等级的学生有的概率提升为A等级:原获C等级的学生有的概率提升为B等级:原获D等级的学生有的概率提升为C等级.用频率估计概率,每名学生复评结果相互独立.
(1)若初评中甲获得B等级,乙、丙获得C等级,记甲、乙、丙三人复评后等级为B等级的人数为ξ,求ξ的分布列和数学期望;
(2)从全体高三学生中任选1人,在已知该学生是复评晋级的条件下,求他初评是C等级的概率.
18.(2023·山东淄博·统考二模)两个安全设备间由一组对接码进行“握手”连接,对接码是一个由“1,2,3,4”4个数字组成的六位数,每个数字至少出现一次.
(1)求满足条件的对接码的个数;
(2)若对接密码中数字1出现的次数为,求的分布列和数学期望.
19.(2023·安徽黄山·统考三模)英国数学家贝叶斯(1701-1763)在概率论研究方面成就显著,创立了贝叶斯统计理论,对于统计决策函数、统计推断等做出了重要贡献.贝叶斯公式就是他的重大发现,它用来描述两个条件概率之间的关系.该公式为:设,,…,是一组两两互斥的事件,,且,,则对任意的事件,,有,. 现有三台车床加工同一型号的零件,第台加工的次品率为,每加工一个零件耗时分钟,第,台加工的次品率均为,每加工一个零件分别耗时分钟和分钟,加工出来的零件混放在一起.已知第,,台车床加工的零件数分别占总数的,,.
(1)任取一个零件,计算它是次品的概率;
(2)如果取到的零件是次品,计算加工这个零件耗时(分钟)的分布列和数学期望.
20.(2023·广东湛江·统考一模)某工厂一台设备生产一种特定零件,工厂为了解该设备的生产情况,随机抽检了该设备在一个生产周期中的100件产品的关键指标(单位:),经统计得到下面的频率分布直方图:
(1)由频率分布直方图估计抽检样本关键指标的平均数和方差.(用每组的中点代表该组的均值)
(2)已知这台设备正常状态下生产零件的关键指标服从正态分布,用直方图的平均数估计值作为的估计值,用直方图的标准差估计值s作为估计值.
(i)为了监控该设备的生产过程,每个生产周期中都要随机抽测10个零件的关键指标,如果关键指标出现了之外的零件,就认为生产过程可能出现了异常,需停止生产并检查设备.下面是某个生产周期中抽测的10个零件的关键指标:
利用和判断该生产周期是否需停止生产并检查设备.
(ii)若设备状态正常,记X表示一个生产周期内抽取的10个零件关键指标在之外的零件个数,求及X的数学期望.
参考公式:直方图的方差,其中为各区间的中点,为各组的频率.
参考数据:若随机变量X服从正态分布,则,,,,.
21.(2023·湖南岳阳·统考三模)某大型商场为了回馈广大顾客,设计了一个抽奖活动,在抽奖箱中放8个大小相同的小球,其中4个为红色,4个为黑色.抽奖方式为:每名顾客进行两次抽奖,每次抽奖从抽奖箱中一次性摸出两个小球.如果每次抽奖摸出的两个小球颜色相同即为中奖,两个小球颜色不同即为不中奖.
(1)若规定第一次抽奖后将球放回抽奖箱,再进行第二次抽奖,求中奖次数的分布列和数学期望.
(2)若规定第一次抽奖后不将球放回抽奖箱,直接进行第二次抽奖,求中奖次数的分布列和数学期望.0.8
1.2
0.95
1.01
1.23
1.12
1.33
0.97
1.21
0.83
(3)如果你是商场老板,如何在上述问两种抽奖方式中进行选择?请写出你的选择及简要理由.
22.(2023·黑龙江大庆·统考三模)天宫空间站是我国建成的国家级太空实验室,由天和核心舱、问天实验舱和梦天实验舱组成,已经开启长期有人驻留模式,结合空间站的相关知识,某职业学校的老师设计了以空间站为主题的编程训练,训练内容由“太空发射”、“自定义漫游”、“全尺寸太阳能”、“空间运输”等10个相互独立的编程题目组成,训练要求每个学生必须选择两个不同的题目进行编程练习,并且学生间的选择互不影响,老师将班级学生分成四组,指定甲、乙、丙、丁为组长.
(1)求甲、乙、丙、丁这四个人中至少有一人选择“太空发射”的概率;
(2)记X为这四个人中选择“太空发射”的人数,求X的分布列及数学期望;
(3)如果班级有n个学生参与编程训练(其中n是能被5整除的正整数),则这n个学生中选择“太空发射”的人数最有可能是多少人?
第十章 概率、随机变量及其分布列-备战2024年高考数学重难点专题测试模拟卷(新高考专用): 这是一份第十章 概率、随机变量及其分布列-备战2024年高考数学重难点专题测试模拟卷(新高考专用),文件包含第十章概率随机变量及其分布列-备战高考数学专题测试模拟卷新高考专用解析卷docx、第十章概率随机变量及其分布列-备战高考数学专题测试模拟卷新高考专用原题卷docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
第十章 概率、随机变量及其分布列-备战高考数学专题测试模拟卷(新高考专用): 这是一份第十章 概率、随机变量及其分布列-备战高考数学专题测试模拟卷(新高考专用),文件包含第十章概率随机变量及其分布列-备战高考数学专题测试模拟卷新高考专用解析卷docx、第十章概率随机变量及其分布列-备战高考数学专题测试模拟卷新高考专用原题卷docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
2023年高考数学三模试题分项汇编(新高考专用)专题16 计数原理,概率,随机变量及其分布列(解答题)(原卷版): 这是一份2023年高考数学三模试题分项汇编(新高考专用)专题16 计数原理,概率,随机变量及其分布列(解答题)(原卷版),共13页。