终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    内蒙古赤峰市第二中学2023-2024学年高三上学期10月月考数学(文)试题(Word版附解析)

    立即下载
    加入资料篮
    内蒙古赤峰市第二中学2023-2024学年高三上学期10月月考数学(文)试题(Word版附解析)第1页
    内蒙古赤峰市第二中学2023-2024学年高三上学期10月月考数学(文)试题(Word版附解析)第2页
    内蒙古赤峰市第二中学2023-2024学年高三上学期10月月考数学(文)试题(Word版附解析)第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    内蒙古赤峰市第二中学2023-2024学年高三上学期10月月考数学(文)试题(Word版附解析)

    展开

    这是一份内蒙古赤峰市第二中学2023-2024学年高三上学期10月月考数学(文)试题(Word版附解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题:本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1. 已知集合,,则( )
    A. B. C. D.
    【答案】D
    【解析】
    分析】
    解不等式确定集合,再由交集定义计算.
    【详解】由题意,所以.
    故选:D.
    【点睛】本题考查集合的交集运算,考查解一元二次不等式,属于基础题.
    2. 复数在复平面上对应的点位于虚轴上,则实数a的值为( )
    A. 1B. 2C. D.
    【答案】B
    【解析】
    【分析】先化简复数z,然后根据实部为0可解.
    【详解】,
    因为复数z对应点在虚轴上,
    所以,解得.
    故选:B
    3. 已知角是第一象限角,,则( )
    A. B.
    C. D.
    【答案】B
    【解析】
    【分析】根据同角三角函数基本关系及两角和余弦公式求解即可.
    【详解】因为角是第一象限角,,
    所以,
    所以.
    故选:B
    4. 已知中,“”是“”成立的( )
    A. 充分不必要条件B. 必要不充分条件
    C. 充分必要条件D. 既不充分也不必要条件
    【答案】C
    【解析】
    【分析】由三角形大边对大角可知,由在上的单调性可得,由此可确定结果.
    【详解】由正弦定理以及三角形大边对大角可得:

    又,在上单调递减,
    ,即,
    “”是“”成立的充分必要条件.
    故选:C.
    5. 设是等比数列,且,,则( )
    A. 12B. 24C. 30D. 32
    【答案】D
    【解析】
    【分析】根据已知条件求得的值,再由可求得结果.
    【详解】设等比数列的公比为,则,

    因此,.
    故选:D.
    【点睛】本题主要考查等比数列基本量的计算,属于基础题.
    6. 若,且,那么是( )
    A. 等边三角形B. 等腰三角形
    C. 直角三角形D. 等腰直角三角形
    【答案】A
    【解析】
    【分析】利用余弦定理求出的值,结合角的取值范围可得出角的值,再利用结合余弦定理可得出,即可得出结论.
    【详解】因为,则,可得,
    由余弦定理可得,因为,所以,,
    因为,则,整理可得.
    所以,为等边三角形.
    故选:A.
    7. 设,,, 则( )
    A. B. C. D.
    【答案】C
    【解析】
    【分析】根据,可得,从而可得,再根据,,可得,进而可求解.
    【详解】因为,所以,,即,
    又,,则,
    所以.
    故选:C.
    8. 中国古代四大名楼鹳雀楼,位于山西省运城市永济市蒲州镇,因唐代诗人王之涣的诗作《登鹳雀楼》而流芳后世.如图,某同学为测量鹳雀楼的高度MN,在鹳雀楼的正东方向找到一座建筑物AB,高约为37m,在地面上点C处(B,C,N三点共线)测得建筑物顶部A,鹳雀楼顶部M的仰角分别为和,在A处测得楼顶部M的仰角为,则鹳雀楼的高度约为( )

    A. 74mB. 60mC. 52mD. 91m
    【答案】A
    【解析】
    【分析】求出,,,在中,由正弦定理求出,从而得到的长度.
    【详解】在中,,
    ,,
    在中,,
    由,,
    在中,.
    故选:A
    9. 已知定义在上的奇函数满足.当时,,则( )
    A. B. C. 2D. 4
    【答案】B
    【解析】
    【分析】根据且为奇函数得到4是的一个周期,根据为奇函数得到,可求得的解析式,然后利用周期性和奇偶性即可求.
    【详解】因为,且为奇函数,所以,,即,所以4是的一个周期,
    因为为定义在R上的奇函数,所以,即,解得,则,


    所以.
    故选:B.
    10. 将函数的图像向右平移个单位后得到函数的图像,若对满足的 有, 则( )
    A. B. C. D.
    【答案】D
    【解析】
    【分析】根据三角函数图象的变换规律求出,再利用三角函数图象的性质求解即可.
    【详解】∵,∴,
    由于,可知和分别为两个函数的最大值和最小值,
    不妨设,,
    则,,
    由于,可得,解得,
    故选:D.
    11. 在四面体中,,平面平面,则该四面体外接球的表面积为( )
    A. B. C. D.
    【答案】A
    【解析】
    【分析】首先找到底面三角形的外接圆圆心和半径,确定过该圆心与底面的垂线,在垂线上设球心,由勾股定理,求出半径,可得答案.
    【详解】,,,,
    为等边三角形,又平面平面,
    取中点,连接,则球心在上,如下图:
    则,有,解得,
    该四面体外接球的表面积为.
    故选:A.
    12. 函数的部分图象如图所示,,则下列四个选项中正确的个数为( )


    ②函数在上单调递减;
    ③函数在上的值域为;
    ④曲线在处的切线斜率为.
    A. 0个B. 1个C. 2个D. 3个
    【答案】C
    【解析】
    【分析】首先根据函数图象求函数的解析式,根据,代入后,即可运算求值,即可判断①;结合三角函数的性质,整体代入,即可判断②③,利用函数导数的几何意义,即可判断④.
    【详解】由图可知,,且,则,
    周期,,
    ,得,,
    则,,当时,,
    所以,
    对于①,令,得,,
    当时,,即函数在轴左侧离轴最近的对称轴为,
    由图可知,,即,
    且,即,
    所以
    ,故①正确;
    对于②,当,,
    在区间不单调,所以在区间上不单调,故②错误;
    对于③,当,,,
    则,所以函数在上的值域为,故③错误;
    对于④,因为,所以,
    ,所以曲线在处的切线斜率为,故④正确.
    故选:C
    二、填空题:本题共4个小题,每小题5分,共20分.
    13. 已知抛物线的焦点为F,直线与抛物线交于点M,且,则___________.
    【答案】4
    【解析】
    【分析】求出点M的坐标,利用抛物线的焦半径公式可得关于p的方程,即可求得答案.
    【详解】把代入抛物线方程(),得,
    得,根据抛物线的定义有,解得,
    故答案为:4
    14. 已知,与是方程的两个根,则___________.
    【答案】
    【解析】
    【分析】根据与是方程的两个根,顶顶顶,且,再利用两角和的正切公式求解.
    【详解】解:因为,且与是方程的两个根,
    所以,且,
    所以,且,
    所以,
    故答案为:
    15. 已知中,若的面积为为的平分线与边的交点,则的长度是__________.
    【答案】
    【解析】
    【分析】根据三角形面积公式,结合三角形角平分线的性质、余弦定理进行求解即可.
    【详解】因为的面积为,
    所以,
    由余弦定理可知:,
    因为是角平分线,
    所以,
    在三角形中,由余弦定理可知:,
    在三角形中,由余弦定理可知,
    故答案为:
    【点睛】关键点睛:本题的关键是利用三角形角平分线的性质.
    16. 已知直线与曲线相切,则的最小值为__________.
    【答案】
    【解析】
    【分析】设出切点,利用导数的几何意义找出所满足的关系式,然后利用导数研究函数的最值求的最小值即可.
    【详解】设切点为 ,
    则,解得:,
    所以 .
    令 , 所以 ,
    令 ,解得 ,令 , 解得 ,
    所以 在 上单调递减,在 上单调递增,
    所以 .
    故答案为:.
    三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
    (一)必考题:每题12分,共60分.
    17. 已知函数.
    (1)求的最小正周期和的单调递减区间;
    (2)当时,求函数的最小值及取得最小值时x的值.
    【答案】(1)π;;(2)当时,函数取得最小值,最小值为.
    【解析】
    【分析】(1)利用二倍角降幂公式、辅助角公式可得出,利用周期公式可计算出函数的最小正周期,解方程可得出函数的对称中心坐标;解不等式,可得出函数的单调递减区间;
    (2)由,计算出的取值范围,利用正弦函数的性质可得出该函数的最小值以及对应的的值.
    【详解】(1),
    所以,函数的最小正周期为.
    由,可得,
    函数的对称中心为;
    解不等式,解得.
    因此,函数的单调递减区间为;
    (2)当时,,
    当时,即当时,函数取得最小值,最小值为.
    【点睛】本题考查正弦型函数周期、对称中心、单调区间以及最值的求解,解题的关键就是要将三角函数解析式化简,借助正弦函数的基本性质求解,考查分析问题和解决问题的能力,属于中等题.
    18. 记等差数列的前项和为,已知,且.
    (1)求和;
    (2)设,求数列前项和.
    【答案】(1);;
    (2).
    【解析】
    【分析】(1)利用等差数列性质求出通项公式和前项和;
    (2)利用裂项相消法求和.
    【小问1详解】
    设的公差为,因为,所以,
    又,所以,解得,
    所以,

    【小问2详解】

    所以

    19. 在△ABC内,角A,B,C所对的边分别为a,b,c,且.
    (1)求角B的值;
    (2)若,点D是AC边上靠近点C的三等分点,求BD的取值范围.
    【答案】(1)
    (2)
    【解析】
    【分析】(1)首先由正弦定理,边化角,再根据三角函数恒等变换,化简求角;(2)首先利用基底表示向量,再根据数量积的运算,结合条件,即可求解.
    【小问1详解】
    ∵.
    ∴由正弦定理,得.
    ∴.
    ∴.
    又,∴.
    又∵,∴.又,∴.
    【小问2详解】
    由题意可知,,
    即,
    所以,

    ,且,
    所以,
    ,由可知,,
    所以,则的取值范围是.
    20. 已知椭圆的短轴长为,一个焦点为.
    (1)求椭圆的方程和离心率;
    (2)设直线与椭圆交于两点,点在线段上,点关于点的对称点为.当四边形的面积最大时,求的值.
    【答案】(1),
    (2)
    【解析】
    【分析】(1)根据求椭圆方程和离心率;
    (2)首先直线方程与椭圆方程联立,利用韦达定理表示四边形面积,并利用基本不等式求最值.
    【小问1详解】
    由题设
    解得
    所以椭圆的方程为.
    的离心率为.
    【小问2详解】
    设椭圆的另一个焦点为,则直线过点.
    由 得.
    设,则,.
    由题设,点为线段的中点,所以点和点到直线的距离相等.
    所以四边形的面积为面积的倍.
    又,
    所以

    所以.
    设,则.
    所以.
    当且仅当,即时,.
    所以四边形的面积最大时,.
    21. 函数的定义域为,并且在定义域内恰有两个极值点,.
    (1)求实数a的取值范围;
    (2)若恒成立,求出实数的取值范围.
    【答案】(1)
    (2)
    【解析】
    【分析】(1)求导得到导函数,根据两个极值点得到,解得答案.
    (2)题目转化为,令,设,求导得到单调区间,计算最值得到答案.
    【小问1详解】
    ,在上有两个极值点,
    则方程在上有两个不等根,所以, 解得:,故
    【小问2详解】
    ,且,
    若恒成立,即恒成立,则只需:,
    令,则,设,
    则,由得,
    当时,,函数单调递减;
    当时,,函数单调递增.
    所以处取得最小值,所以,
    即 ,所以.
    【点睛】关键点睛:本题考查了根据极值点求参数,利用导数解决不等式恒成立问题,意在考查学生的计算能力,转化能力和综合应用能力,其中将不等式转化为函数的单调性求最值是解题的关键.
    (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.
    [选修4-4:坐标系与参数方程]
    22. 在直角坐标系xOy中,曲线的参数方程为(t为参数),曲线的参数方程为(为参数).
    (1)将曲线的参数方程化为普通方程;
    (2)已知点,曲线和相交于A,B两点,求.
    【答案】(1)
    (2)
    【解析】
    【分析】(1)利用消参即可求解普通方程;
    (2)结合条件写出直线过点的标准参数方程,联立方程,利用参数的几何意义求解即可.
    【小问1详解】
    由的参数方程得:,
    所以曲线的普通方程为:.
    【小问2详解】
    由已知得:曲线为过点的直线,
    其标准参数方程形式为:(t为参数),
    联立和的方程得:,即,,
    设与的两个交点A,B对应的参数分别为,,所以,,
    因为,由t的几何意义得:.
    [选修4-5:不等式选讲]
    23. 已知函数.
    (1)解不等式;
    (2)设函数的最小值为,若正数,,满足,证明:.
    【答案】(1);
    (2)证明见解析
    【解析】
    【分析】(1)分,,三种情况讨论解不等式,最后再取并集即可;
    (2)先由绝对值三角不等式求出,再由结合基本不等式求解即可.
    【小问1详解】
    当时,,由可得,则;
    当时,,由可得显然成立,则;
    当时,,由可得,则;
    综上:不等式的解集为;
    小问2详解】
    ,当且仅当即时取等,,则,
    又,,均正数,则
    ,当且仅当,即时等号成立,则.

    相关试卷

    内蒙古赤峰二中2023-2024学年高三上学期第三次月考数学试题(文)(Word版附解析):

    这是一份内蒙古赤峰二中2023-2024学年高三上学期第三次月考数学试题(文)(Word版附解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    宁夏银川市贺兰县景博中学2023-2024学年高三上学期第二次月考数学(文)试题(Word版附解析):

    这是一份宁夏银川市贺兰县景博中学2023-2024学年高三上学期第二次月考数学(文)试题(Word版附解析),共18页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    内蒙古自治区赤峰市第二实验中学2023-2024学年高二上学期期中考试数学试题(Word版附解析):

    这是一份内蒙古自治区赤峰市第二实验中学2023-2024学年高二上学期期中考试数学试题(Word版附解析),共22页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map