|试卷下载
终身会员
搜索
    上传资料 赚现金
    人教版九年级数学上册 24.42 《圆》全章复习与巩固(培优篇)(专项练习)
    立即下载
    加入资料篮
    人教版九年级数学上册 24.42 《圆》全章复习与巩固(培优篇)(专项练习)01
    人教版九年级数学上册 24.42 《圆》全章复习与巩固(培优篇)(专项练习)02
    人教版九年级数学上册 24.42 《圆》全章复习与巩固(培优篇)(专项练习)03
    还剩31页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版九年级数学上册 24.42 《圆》全章复习与巩固(培优篇)(专项练习)

    展开
    这是一份人教版九年级数学上册 24.42 《圆》全章复习与巩固(培优篇)(专项练习),共34页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    1.如图:已知AB是⊙O的直径,点C在⊙O上,点D在半径OA上(不与点O,A重合).若∠COA=60°,∠CDO=70°,∠ACD的度数是( )
    A.60°B.50°C.30°D.10°
    2.如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是( )
    A.点(0,3)B.点(2,3)
    C.点(5,1)D.点(6,1)
    3.如图,将一块等腰的直角顶点放在上,绕点旋转三角形,使边经过圆心,某一时刻,斜边在上截得的线段,且,则的长为( )
    A.3cmB.207cmC.cmD.cm
    4.已知,如图,,点在第二象限运动,求的最小值为( ).
    A.B.C.D.
    5.如图,在中,点在弦上移动,连接过点作交于点.若则的最大值是( )
    A.B.C.D.
    6.如图,已知:点A、B、C、D在⊙O上,AB=CD,下列结论:①∠AOC=∠BOD;②∠BOD=2∠BAD;③AC=BD;④∠CAB=∠BDC;⑤∠CAO+∠CDO=180°.其中正确的个数为( )
    A.2B.3C.4D.5
    如图,是的直径,分别是的中点,在上.下列结论:①;②;③四边形是正方形;④.其中正确的结论有( )
    A.1个B.2个C.3个D.4个
    8.如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是( )
    A.B.C.D.
    9.如图,已知,,以为直径的圆交于点,过点的⊙的切线交于点若,则⊙的半径是( )
    A.B.C.D.
    10.如图,在中,,,是的平分线,经过,两点的圆的圆心恰好落在上,分别与、相交于点、.若圆半径为2.则阴影部分面积( ).

    A.B.C.D.
    二、填空题
    11.已知⊙O的直径为10cm,AB,CD是⊙O的两条弦,,,,则与之间的距离为________cm.
    12.如图,AB、CD是⊙O的两条弦,若∠AOB+∠C=180°,∠COD=∠A,则∠AOB= ________
    13.如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径是6,若点P是⊙O上的一点,=,则PA的长为_____.

    14.在矩形ABCD中,AB=4,BC=6,动点P为矩形边上的一点,点P沿着B﹣C的路径运动(含点B和点C),则△ADP的外接圆的圆心O的运动路径长是________.

    15.如图,点I为△ABC的内心,连AI交△ABC的外接圆于点D,若,点E为弦AC的中点,连接EI,IC,若,,则IE的长为__.

    16.已知点A、B的坐标分别是(0,1)、(0,3),点C为x轴正半轴上一动点,当∠ACB最大时,点C的坐标是_____________.
    17.如图,在平面直角坐标系中,点A、B的坐标分别是(0,2)、(4,0),点P是直线y=2x+2上的一动点,当以P为圆心,PO为半径的圆与△AOB的一条边所在直线相切时,点P的坐标为__________.

    18.如图,⊙O为△ABC的内切圆,∠C=90°,AO的延长线交BC于点D,AC=4,DC=1,则⊙O的半径等于________.

    三、解答题
    19.如图,中,为直径,弦交于P,且,试猜想与之间的关系,并证明你的猜想.

    20.如图,在中,,以为直径的半圆分别交,于点,,连结,.
    (1)求证:.
    (2)当,的度数之比为时,求四边形四个内角的度数.
    21.如图,AB是⊙O的直径,P为AB上一点,弦CD与弦EF交于点P,PB平分∠DPF,连DF交AB于点G.
    (1)求证:CD=EF;
    (2)若∠DPF=60°,PE∶PF=1∶3,AB=2,求OG的长.
    22.如图,以AB为直径的上有一动点C,的切线CD交AB的延长线于点D,过点B作交于点M,连接AM,OM,BC.
    (1) 求证:
    (2) 若,填空:
    ① 当AM= 时,四边形OCBM为菱形;
    ② 连接MD,过点O作于点N,若 ,则ON= .
    23.正方形ABCD的四个顶点都在⊙O上,E是⊙O上的一点.
    (1)如图①,若点E在上,F是DE上的一点,DF=BE.求证:△ADF≌△ABE;
    (2)在(1)的条件下,小明还发现线段DE、BE、AE之间满足等量关系:DE-BE=AE.请说明理由;
    (3)如图②,若点E在上.连接DE,CE,已知BC=5,BE=1,求DE及CE的长.
    24.在Rt△ABC中,∠BCA=90°,CA=CB,点D是△ABC外一动点(点B,点D位于AC两侧),连接CD,AD.
    (1) 如图1,点O是AB的中点,连接OC,OD,当△AOD为等边三角形时,∠ADC的度数是 ;
    (2) 如图2,连接BD,当∠ADC=135°时,探究线段BD,CD,DA之间的数量关系,并说明理由;
    (3) 如图3,⊙O是△ABC的外接圆,点D在上,点E为AB上一点,连接CE,DE,当AE=1,BE=7时,直接写出△CDE面积的最大值及此时线段BD的长.
    参考答案
    1.D
    【分析】根据CO=AO,∠COA=60°,可得为等边三角形,所以可得,再根据三角形的外角等于剩余两个内角之和,即可求得∠ACD.
    解:∵OA=OC,∠COA=60°,
    ∴△ACO为等边三角形,
    ∴∠CAD=60°,
    又∵∠CDO=70°,
    ∴∠ACD=∠CDO﹣∠CAD=10°.
    故选D.
    【点拨】本题主要考查三角形的外角性质,三角形的任意一个外角等于剩余两个内角之和.
    2.C
    解:∵过格点A,B,C作一圆弧,∴三点组成的圆的圆心为:O(2,0),∵只有∠OBD+∠EBF=90°时,BF与圆相切,∴当△BOD≌△FBE时,∴EF=BD=2,F点的坐标为:(5,1),∴点B与下列格点的连线中,能够与该圆弧相切的是:(5,1).故选C.
    3.A
    【分析】利用垂径定理得ME=DM=1,利用勾股定理和等腰三角形的性质得OM与DO的关系式,解得结果.
    解:过O点作OM⊥AB,
    ∴ME=DM=1cm,
    设MO=h,CO=DO=x,
    ∵△ABC为等腰直角三角形,AC=BC,
    ∴∠MAO=45°,
    ∴AO=h
    ∵AO=7-x,
    ∴h=7−x,
    在Rt△DMO中,
    h2=x2-1,
    ∴2x2-2=49-14x+x2,
    解得:x=-17(舍去)或x=3,
    故选A.
    【点拨】本题主要考查了勾股定理,垂径定理,等腰三角形的性质,作出适当的辅助线,数形结合,建立等量关系是解答此题的关键.
    4.D
    【分析】根据题意知点P的运动轨迹是以点M为圆心,半径的圆弧,当点P在BC上时,PC有最小值,据此可求解.
    解:如图,
    ∵A(-1,0),B(-3,0),
    ∴AB=2,
    ∵∠APB=30°,
    ∴点P的轨迹是以M为圆心,半径r=2的圆弧;
    易得圆心坐标为, ,
    .
    故选
    【点拨】本题考查了线段最短问题,确定点P的位置是解本题的难点.
    5.D
    【分析】连接OD,如图,利用勾股定理得CD,利用垂线段最短得到当OC⊥AB时,OC最小,再求出CD即可.
    解:连接OD,如图,
    ∵CD⊥OC,
    ∴∠DCO=90∘,
    ∴CD=,
    当OC的值最小时,CD的值最大,
    而OC⊥AB时,OC最小,此时D. B两点重合,
    ∴CD=CB=AB=×2=1.
    即CD的最大值为1.
    故答案为:D.
    【点拨】本题考查了垂线段最短,勾股定理和垂径定理等知识点,求出点C的位置是解题的关键.
    6.C
    【分析】根据圆内接四边形的性质、圆周角定理和圆心角、弧、弦之间的关系逐个判断即可.
    解:∵AB=CD,
    ∴,
    ∴,
    ∴∠AOC=∠BOD,故①正确;
    ∵圆周角∠BAD和圆心角∠BOD都对着,
    ∴∠BOD=2∠BAD,故②正确;
    ∵,
    ∴AC=BD,故③正确;
    ∵圆周角∠CAB和∠BDC都对着,
    ∴∠CAB=∠BDC,故④正确;
    延长DO交⊙O于M,连接AM,
    ∵D、C、A、M四点共圆,
    ∴∠CDO+∠CAM=180°(圆内接四边形对角互补),
    ∵∠CAM>∠CAO,
    ∴∠CAO+∠CDO<180°,故⑤错误;
    即正确的个数是4个,
    故选C.
    【点拨】本题考查了圆内接四边形的性质、圆周角定理和圆心角、弧、弦之间的关系等知识点,能灵活运用定理进行推理是解此题的关键.
    7.C
    【分析】根据题意连结OM、ON,易得,利用含30度的直角三角形三边关系得∠OMC=30°,∠OND=30°,所以,则可对①进行判断;再计算出∠MOC=∠NOD=60°,则∠MON=60°,于是根据圆心角、弧、弦的关系对②进行判断;先证明四边形MCDN为平行四边形,加上∠MCO=90°,则可判断四边形MCDN为矩形,由于则,于是可对③进行判断;由四边形MCDN为矩形得到MN=CD,则,则可对④进行判断.
    【详解】解:如图,连接.
    分别是的中点,


    ,故①正确.
    ,故②正确.

    ∴四边形为平行四边形.

    ∴四边形为矩形.

    ∴四边形不是正方形,故③错误.
    ∵四边形为矩形,
    ,
    ,故④正确.
    综上,①②④正确.
    故选:C.
    【点睛】本题考查圆周角定理以及圆心角、弧、弦的关系,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
    8.B
    【分析】连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,利用垂径定理得到OD⊥AB,则AD=BD=AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC和弧CD所在的圆为等圆,则根据圆周角定理得到,所以AC=DC,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF为正方形得到OF=EF=1,然后计算出CF后得到CE=BE=3,于是得到BC=3.
    解:连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,
    ∵D为AB的中点,
    ∴OD⊥AB,
    ∴AD=BD=AB=2,
    在Rt△OBD中,OD==1,
    ∵将弧沿BC折叠后刚好经过AB的中点D,
    ∴弧AC和弧CD所在的圆为等圆,
    ∴,
    ∴AC=DC,
    ∴AE=DE=1,
    易得四边形ODEF为正方形,
    ∴OF=EF=1,
    在Rt△OCF中,CF==2,
    ∴CE=CF+EF=2+1=3,
    而BE=BD+DE=2+1=3,
    ∴BC=3,
    故选B.
    【点拨】本题考查了圆周角定理、垂径定理、切线的性质,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系,熟练掌握相关的定理和性质是解题的关键.
    9.D
    【分析】由题意可得DE⊥BC,由勾股定理可得DE=3,利用面积法结合勾股定理求得BC的长,利用等腰三角形的性质求得AB的长,即可求⊙O的半径.
    解:如图,连接OD、BD,

    ∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∴BD⊥AC,
    又∵AB=BC,
    ∴AD=CD,
    又∵AO=OB,
    ∴OD是△ABC的中位线,
    ∴OD∥BC,
    ∵DE是⊙O的切线,
    ∴DE⊥OD,
    ∴DE⊥BC,
    ∵CD=5,CE=4,
    ∴DE=,
    ∵S△BCD=BD•CD=BC•DE,
    ∴5BD=3BC,
    ∴BD=BC,
    ∵,
    ∴,
    解得:,
    ∵AB=BC,
    ∴AB=,
    ∴⊙O的半径是:,
    故选:D.
    【点拨】本题主要考查了切线的性质,圆周角定理,三角形中位线定理,勾股定理的应用,等腰三角形的性质,灵活运用相关的性质定理、综合运用知识是解题的关键.
    10.C
    【分析】连接OD,OF.首先证明OD∥AC,推出S阴=S扇形OFA,再证明△AOF是等边三角形即可解决问题.
    解:连接OD,OF.
    ∵AD是∠BAC的平分线,
    ∴∠DAB=∠DAC,
    ∵OD=OA,
    ∴∠ODA=∠OAD,
    ∴∠ODA=∠DAC,
    ∴OD∥AC,
    ∴∠ODB=∠C=90°,
    ∴S△AFD=S△OFA,
    ∴S阴=S扇形OFA,
    ∵OD=OA=2,AB=6,
    ∴OB=4,
    ∴OB=2OD,
    ∴∠B=30°,
    ∴∠A=60°,
    ∵OF=OA,
    ∴△AOF是等边三角形,
    ∴∠AOF=60°,
    ∴S阴=S扇形OFA=.
    故选:C.
    【点拨】本题考查扇形的面积,等边三角形的判定和性质,解直角三角形等知识,解题的关键是添加常用辅助线,用转化的思想思考问题.
    11.7或1.
    【分析】分两种情况考虑:当两条弦位于圆心O同一侧时,当两条弦位于圆心O两侧时;利用垂径定理和勾股定理分别求出OE和OF的长度,即可得到答案.
    解:分两种情况考虑:
    当两条弦位于圆心O一侧时,如图1所示,
    过O作OE⊥CD,交CD于点E,交AB于点F,连接OC,OA,
    ∵AB∥CD,∴OE⊥AB,
    ∴E、F分别为CD、AB的中点,
    ∴CE=DE=CD=3cm,AF=BF=AB=4cm,
    在Rt△AOF中,OA=5cm,AF=4cm,
    根据勾股定理得:OF=3cm,
    在Rt△COE中,OC=5cm,CE=3cm,
    根据勾股定理得:OE═4cm,
    则EF=OEOF=4cm3cm=1cm;
    当两条弦位于圆心O两侧时,如图2所示,
    同理可得EF=4cm+3cm=7cm,
    综上,弦AB与CD的距离为7cm或1cm.
    故答案为:7或1.
    【点拨】此题考查了垂径定理,勾股定理,利用了分类讨论的思想,熟练掌握垂径定理是解本题的关键.
    12.108°
    解:设∠COD=∠A=x°,表示出∠AOB=(180﹣2x)°和∠OCD=∠ODC= ,然后利用三角形内角和定理求解+180﹣2x=180,解得:x=36,可求∠AOB=(180﹣2x)°=108°,
    故答案为108°.
    13.6
    【分析】连接OA、OB、OP,根据圆周角定理求得∠APB=∠C=30°,进而求得∠PAB=∠APB=30°,∠ABP=120°,根据垂径定理得到OB⊥AP,AD=PD,∠OBP=∠OBA=60°,即可求得△AOB是等边三角形,从而求得PB=OA=6,解直角三角形求得PD,即可求得PA.
    解:连接OA、OB、OP,
    ∵∠C=30°,
    ∴∠APB=∠C=30°,
    ∵,
    ∴PB=AB,
    ∴∠PAB=∠APB=30°
    ∴∠ABP=120°,
    ∵PB=AB,
    ∴OB⊥AP,AD=PD,
    ∴∠OBP=∠OBA=60°,
    ∵OB=OA,
    ∴△AOB是等边三角形,
    ∴AB=OA=6,
    则Rt△PBD中,PD=PB=×6=3,
    ∴AP=2PD=6,
    故答案为6.
    【点拨】本题主要考查垂径定理,关键在于根据题意做出辅助线,构造直角三角形,结合三角函数的特殊角进行计算,这是这类题目的通常解题思路.
    14.
    解:分析:如图,连接AC、BD交于点O′.当点P与B或C重合时,△PAD的外接圆的圆心与O′重合,当PA=PD时,设△PAD的外接圆的圆心为O,PO的延长线交AD于E,设PO=OD=x,因为△PAD的外心在线段AD的垂直平分线上,
    观察图象可知,点P沿着B-C的路径运动,△ADP的外接圆的圆心O的运动路径长是2OO′,由此即可解决问题;
    解:如图,连接AC、BD交于点O′.
    当点P与B或C重合时,△PAD的外接圆的圆心与O′重合,
    当PA=PD时,设△PAD的外接圆的圆心为O,PO的延长线交AD于E,设PO=OD=x,
    Rt△ODE中,∵OD2=OE2+DE2,
    ∴x2=(4-x)2+32,
    解得x=,
    ∴OE=4-=,
    ∵O′B=O′D,AE=DE,
    ∴O′E=AB=2,
    ∴OO′=O′E-OE=,
    ∵△PAD的外心在线段AD的垂直平分线上,
    观察图象可知,点P沿着B-C的路径运动,△ADP的外接圆的圆心O的运动路径长是2OO′=.
    故答案为:.
    【点拨】本题考查轨迹、矩形的性质、三角形的外接圆等知识,解题的关键是正确寻找点O的运动轨迹.
    15.4
    【分析】由已知条件可得到ID=BD=DC,可得I、B、C三点在以D点位圆心的圆上,过点D做DF⊥IC与点F,可得四边形EIDF为平行四边形,可得IE=DF,即可求出IE的长.
    解:
    如图:I为△ABC的内心,可得∠BAD=∠CAD,BD=CD,
    又∠DIC=∠DAC+∠ACI,∠ICD=∠ICB+∠BCD
    其中∠DAC=∠BAD=∠BCD,∠ACI=∠ICB,
    ∠DIC=∠ICD
    ID=CD, ID=BD=DC=5, 可得AI=2CD=10
    可得I、B、C三点在以D点位圆心的圆上,过点D做DF⊥IC与点F,
    可得IF=FC(垂经定理),
    在RT△IFD中,,
    又在△AIC中,AE=EC, IF=FC,
    EF为△AIC的中位线,
    EF∥AD,即EF∥ID, 且EF==5=ID,
    四边形EIDF为平行四边形,可得IE=DF=4,
    故答案:4.
    【点拨】本题主要考查圆的垂经定理,圆周角定理及平行四边形相关知识,难度较大,需综合运用各知识求解.
    16.
    【分析】根据题意,找到当⊙P与x轴相切于点C时,最大,作出相应辅助线,可得出,,再由等腰三角形三线合一性质可得,根据切线定理确定四边形PCOH为矩形,最后根据勾股定理即可得出.
    解:过点A、B作⊙P,⊙P与x轴相切于点C时,最大,
    连接PA、PB、PC,作PH⊥y轴于H,如图,
    ∵点A、B的坐标分别是(0,1)、(0,3),
    ∴,,
    ∵PH⊥AB,
    ∴,
    ∴,
    ∵点⊙P与x轴相切于点C,
    ∴PC⊥x轴,
    ∴四边形PCOH为矩形,
    ∴,
    ∴,
    在中,,
    ∴C点坐标为.
    故答案为.
    【点拨】题目主要考查隐圆模型,涉及知识点包括直线与圆的位置关系、等腰三角形性质、勾股定理、矩形的判定和性质等,理解题意,找准当⊙P与x轴相切于点C时,最大,作出相应辅助线是解题关键.
    17.(0,2),(﹣1,0),(﹣,1).
    【分析】先求出点C的坐标,分为三种情况:圆P与边AO相切时,当圆P与边AB相切时,当圆P与边BO相切时,求出对应的P点即可.
    解:∵点A、B的坐标分别是(0,2)、(4,0),
    ∴直线AB的解析式为y=-x+2,
    ∵点P是直线y=2x+2上的一动点,
    ∴两直线互相垂直,即PA⊥AB,且C(-1,0),
    当圆P与边AB相切时,PA=PO,
    ∴PA=PC,即P为AC的中点,
    ∴P(-,1);
    当圆P与边AO相切时,PO⊥AO,即P点在x轴上,
    ∴P点与C重合,坐标为(-1,0);
    当圆P与边BO相切时,PO⊥BO,即P点在y轴上,
    ∴P点与A重合,坐标为(0,2);
    故符合条件的P点坐标为(0,2),(-1,0),(-,1),
    故答案为(0,2),(-1,0),(-,1).
    【点拨】本题主要考查待定系数法确定一次函数关系式,一次函数的应用,及直角三角形的性质,直线与圆的位置关系,可分类3种情况圆与△AOB的三边分别相切,根据直线与圆的位置关系可求解点的坐标.
    18.
    【分析】设圆O与AC的切点为M,圆的半径为r,先证得△AOM∽△ADC,再根据相似三角形的对应边成比例即可求得结果.
    解:设圆O与AC的切点为M,圆的半径为r,
    如图,连接OM,
    ∵∠C=90°
    ∴CM=r,
    ∵△AOM∽△ADC,
    ∴OM:CD=AM:AC,
    即r:1=(4-r):4,
    解得r=,
    故答案为.
    【点拨】本题考查了三角形的内切圆和内心,解答本题的关键是作出辅助线OM,证得△AOM∽△ADC.同时熟练掌握相似三角形的对应边成比例的性质.
    19.
    【分析】连接OC、OD,根据OC=OD,推出∠D=∠C=∠COP,根据外角的性质证得∠AOD=3∠COP,即可得到结论.
    解:连接OC、OD,
    ∵OC=OD,
    ∴∠C=∠D,
    ∵,
    ∴∠C=∠COP,
    ∴∠D=∠C=∠COP,
    ∵∠AOD=∠DPO+∠D=∠C+∠COP+∠D=3∠COP,
    ∴.
    【点拨】此题考查同圆的半径相等的性质,等边对等角的性质,三角形外角性质,以及弧、弦、圆心角定理,熟记各定理并应用解决问题是解题的关键.
    20.(1)证明见分析;(2),,,.
    【分析】(1)连接AD后,证明这两条弧所对的圆周角相等,即,该题得证;
    (2)由这两条弧度数之比为4:5,分别求出它们的度数,再根据 ,求出和的度数,即可求出 和,利用圆的内接四边形对角互补可以得到另外两个内角的度数.
    解:(1)如图,连结,
    ∵是直径,
    ∴,
    ∵,
    ∴,
    ∴.
    (2)∵,与的度数之比为,
    ∴,,
    ∵,∴,
    ∴,
    ∴,,
    ∵,,
    ∴,,
    ∴,,,.
    【点拨】本题考查了圆中的弧和圆周角之间的关系,学生应在理解圆周角定理以及其推论的同时,能熟练应用它们,解决本题的关键是通过连线,构造两弧所对的圆周角,通过角的关系来证明弧的关系,同时应明白圆周角等于其所对弧的度数的二分之一,能由弧度求出角度,只有牢牢记住它们的关系,才能灵活地在角与弧之间进行转化,求出答案.
    21.(1)见分析(2)
    【分析】(1)过点O作OM⊥EF于点M,ON⊥CD于点N,连接OF、OD,利用HL证明Rt△OFM≌Rt△ODN,可得FM=DN,进而可得结论;
    (2)根据PE:PF=1:3,可以设PE=x,PF=3x,则EF=PE+PF=4x,利用含30度角的直角三角形可得OM=x,OP=x,然后证明Rt△OPM≌Rt△OPN,可得PM=PN,再证明△PDF是等边三角形,可得DF=PF=3x,FG=DF=,然后根据勾股定理即可求出OG的长.
    (1)证明:如图,过点O作OM⊥EF于点M,ON⊥CD于点N,连接OF、OD,
    则∠OMF=∠OND=90°,
    ∵PB平分∠DPF,OM⊥EF,ON⊥CD,
    ∴OM=ON,
    在Rt△OFM和Rt△ODN中,
    ∵,
    ∴Rt△OFM≌Rt△ODN(HL),
    ∴FM=DN,
    ∵OM⊥EF,ON⊥CD,
    ∴EF=2FM,CD=2DN,
    ∴CD=EF;
    (2)解:∵PE:PF=1:3,
    ∴设PE=x,PF=3x,
    ∴EF=PE+PF=4x,
    ∵OM⊥EF,
    ∴EM=FM=EF=2x,
    ∴PM=EM-PE=2x-x=x,
    ∵PB平分∠DPF,∠DPF=60°,
    ∴∠FPB=DPB=∠DPF=30°,
    ∴OM=x,OP=x,
    在Rt△OPM和Rt△OPN中,

    ∴Rt△OPM≌Rt△OPN(HL),
    ∴PM=PN,
    由(1)知:FM=DN,
    ∴PM+FM=PN+DN,
    ∴PF=PD,
    ∵∠DPF=60°,
    ∴△PDF是等边三角形,
    ∵PB平分∠DPF,
    ∴PB⊥DF,垂足为G,
    ∴DF=PF=3x,FG=DF=,
    ∴PG=,
    ∴OG=PG-OP=,
    ∵AB=2,
    ∴OF=AB=,
    在Rt△OFG中,根据勾股定理,得

    ∴,
    整理,得=3,
    解得x=±(负值舍去),
    ∴x=,
    ∴OG=.
    【点拨】本题属于圆的综合题,考查的是圆周角定理,垂径定理,勾股定理,全等三角形的判定与性质,等边三角形的判定与性质,含30度角的直角三角形,解决本题的关键是考查学生综合分析解决问题的能力.
    22.(1)见分析(2)①5;②
    【分析】(1)首先根据圆周角定理可得,由切线的性质可得,再根据平行线的性质即可证得,据此即可证得结论;
    (2)①根据菱形性质可得OM= OA=MB= 5,即可求得AB,再根据勾股定理即可求得;②首先可证得△ODC是等腰直角三角形,再根据勾股定理及三角形的面积,即可求解.
    (1)证明:∵AB是的直径,


    ∵CD是的切线,


    又,



    (2)解:①若四边形OCBM为菱形,
    则OM=OA=MB =5,
    ∵AB是⊙O的直径,
    ∴,
    ∵OA=OB,
    ∴AB=2OA=10,

    当时,四边形OCBM为菱形;
    故答案为:;
    ②如图所示:
    ∵,OB=5,
    ∴,
    ∵CD是的切线,
    ∴,
    ∵OC=OB=5,
    ∴,
    ∴△ODC是等腰直角三角形,
    ∴,
    又,
    ∴,
    ∵OM=OB,
    ∴,
    ∴,△OBM是等腰直角三角形,
    在直角△ODM中,根据勾股定理可得,
    根据△ODM的面积可得ON⋅DM=OM⋅OD,

    故答案为:.
    【点拨】此题主要考查了圆周角定理,圆的切线的性质,平行线的性质与判定,菱形的性质,勾股定理,等腰直角三角形的判定与性质,熟练掌握和运用各图形的性质和判定是解决本题的关键.
    23.(1)证明见分析;(2)理由见分析;(3)DE=7,CE=
    【分析】(1)根据正方形的性质,得AB=AD;根据圆周角的性质,得,结合DF=BE,即可完成证明;
    (2)由(1)结论得AF=AE,;结合∠BAD=90°,得∠EAF=90°,从而得到△EAF是等腰直角三角形,即EF=AE;最后结合DE-DF=EF,从而得到答案;
    (3)连接BD,将△CBE绕点C顺时针旋转90°至△CDH;结合题意,得∠CBE+∠CDE=180°,从而得到E,D,H三点共线;根据BC=CD,得,从而推导得∠BEC=∠DEC=45°,即△CEH是等腰直角三角形;再根据勾股定理的性质计算,即可得到答案.
    解:(1)如图,,,,
    在正方形ABCD中,AB=AD
    在△ADF和△ABE中
    ∴△ADF≌△ABE(SAS);
    (2)由(1)结论得:△ADF≌△ABE
    ∴AF=AE,∠3=∠4
    正方形ABCD中,∠BAD=90°
    ∴∠BAF+∠3=90°
    ∴∠BAF+∠4=90°
    ∴∠EAF=90°
    ∴△EAF是等腰直角三角形
    ∴EF2=AE2+AF2
    ∴EF2=2AE2
    ∴EF=AE
    即DE-DF=AE
    ∴DE-BE=AE;
    (3)连接BD,将△CBE绕点C顺时针旋转90°至△CDH
    ∵四边形BCDE内接于圆
    ∴∠CBE+∠CDE=180°
    ∴E,D,H三点共线
    在正方形ABCD中,∠BAD=90°
    ∴∠BED=∠BAD=90°
    ∵BC=CD

    ∴∠BEC=∠DEC=45°
    ∴△CEH是等腰直角三角形
    在Rt△BCD中,由勾股定理得BD=BC=5
    在Rt△BDE中,由勾股定理得:DE=
    在Rt△CEH中,由勾股定理得:EH2=CE2+CH2
    ∴(ED+DH)2=2CE2,即(ED+BE)2=2CE2
    ∴64=2CE2
    ∴CE=4.
    【点拨】本题考查了正方形、圆、等腰三角形、勾股定理、全等三角形、旋转的知识;解题的关键是熟练掌握正方形、圆周角、正多边形与圆、等腰三角形、勾股定理、全等三角形、旋转的性质,从而完成求解.
    24.(1)135°(2)BDCD+DA,理由见分析(3)△CDE面积的面积最大值为4,BD
    【分析】(1)由等腰直角三角形的性质得∠COA=90°,CO=OA,再由等边三角形的性质得OD=OA,∠ODA=∠DOA=60°,然后求出∠ODC=75°,即可求解;
    (2)过点C作CH⊥CD交AD的延长线于点H,证△ACH≌△BCD(SAS),得BD=AH=HD+DACD+AD;
    (3)连接OC,由勾股定理得CE=5,过点O作ON⊥CE于N,延长ON交⊙O于点D,此时点D到CE的距离最大,△CDE面积的面积最大,然后由三角形面积求出ON,则DN=OD﹣ON,即可求解三角形CDE的面积最大值,最后用勾股定理借助(2)的结论求出AD,即可求出BD.
    (1)解:∵∠BCA=90°,BC=AC,点O是AB的中点,
    ∴∠COA=90°,COAB=OA,
    ∵△AOD是等边三角形,
    ∴OD=OA,∠ODA=∠DOA=60°,
    ∴OC=OD,∠COD=∠COA﹣∠DOA=90°﹣60°=30°,
    ∴∠ODC(180°﹣∠COD)(180°﹣30°)=75°,
    ∴∠ADC=∠ODC+∠ODA=75°+60°=135°,
    故答案为:135°;
    (2)解:线段BD,CD,DA之间的数量关系为:BDCD+DA,
    理由如下:
    过点C作CH⊥CD交AD的延长线于点H,如图2所示:
    则∠CDH=180°﹣∠ADC=180°﹣135°=45°,
    ∴△DCH是等腰直角三角形,
    ∴CH=CD,HDCD,
    ∵∠BCA=90°,
    ∴∠ACH=∠BCD,
    ∴△ACH≌△BCD(SAS),
    ∴BD=AH=HD+DACD+AD;
    (3)解:连接OC,如图3所示:
    ∵∠BCA=90°,BC=AC,
    ∴△ACB是等腰直角三角形,
    ∴∠ABC=45°,
    ∵⊙O是△ABC的外接圆,
    ∴O是AB的中点,
    ∴OC⊥AB,OC=OAAB(AE+BE)(1+7)=4,
    ∴OE=OA﹣AE=4﹣1=3,
    在Rt△COE中,由勾股定理得:CE5,
    ∵CE是定值,
    ∴点D到CE的距离最大时,△CDE面积的面积最大,
    ∵AB是⊙O的直径,
    过点O作ON⊥CE于N,延长ON与⊙O的交点恰好是点D时,点D到CE的距离最大,△CDE面积的面积最大,
    ∵S△OCEOC•OECE•ON,
    ∴ON,
    ∵OD=OC=4,
    ∴DN=OD﹣ON=4,
    此时,在Rt△CNO中,CN,
    在Rt△CND中,CD,
    在Rt△ABD中,BD2=AB2﹣AD2=82﹣AD2,
    由( 2)知,BDCD+ADADAD,
    ∴82﹣AD2=(AD)2,
    ∴AD,
    ∴BDAD,
    即△CDE面积的面积最大值为4,此时,BD.
    【点拨】本题考查等腰直角三角形的性质,等边三角形的性质,全等三角形的判定与性质,勾股定理,圆周角定理的推论,三角形外接圆,三角形面积,本题属圆与三角形综合题目,难度较大,熟练掌握相关性质是解题的关键.
    相关试卷

    人教版九年级数学上册 24.42 《圆》全章复习与巩固(培优篇)(专项练习): 这是一份人教版九年级数学上册 24.42 《圆》全章复习与巩固(培优篇)(专项练习),共34页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    人教版九年级数学上册 24.41 《圆》全章复习与巩固(巩固篇)(专项练习): 这是一份人教版九年级数学上册 24.41 《圆》全章复习与巩固(巩固篇)(专项练习),共31页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    人教版九年级数学上册 25.9 《概率初步》全章复习与巩固(巩固篇)(专项练习): 这是一份人教版九年级数学上册 25.9 《概率初步》全章复习与巩固(巩固篇)(专项练习),共19页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map