专题1.1 集合的概念与运算-2024年高考数学一轮复习《考点•题型 •技巧》精讲与精练
展开知识点总结
1.元素与集合
(1)集合中元素的三个特性:确定性、互异性、无序性.
(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.
(3)集合的三种表示方法:列举法、描述法、图示法.
(4)常用数集及记法
2.集合间的基本关系
(1)子集:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,就称集合A为集合B的子集.记作A⊆B(或B⊇A).
(2)真子集:如果集合A⊆B,但存在元素x∈B,且x∉A,就称集合A是集合B的真子集.
(3)相等:若A⊆B,且B⊆A,则A=B.
(4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集.
3.集合的基本运算
4.集合的运算性质
(1)A∩A=A,A∩∅=∅,A∩B=B∩A.
(2)A∪A=A,A∪∅=A,A∪B=B∪A.
(3)A∩(∁UA)=∅,A∪(∁UA)=U,∁U(∁UA)=A.
常用结论
1.若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个,非空子集有2n-1个,非空真子集有2n-2个.
2.注意空集:空集是任何集合的子集,是非空集合的真子集.
3.A⊆B⇔A∩B=A⇔A∪B=B⇔∁UA⊇∁UB.
4.∁U(A∩B)=(∁UA)∪(∁UB),∁U(A∪B)=(∁UA)∩(∁UB).
典型例题分析
考向一 集合的基本概念
典例一
1.已知集合A={(x,y)|x,y∈N*,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为( )
A.2 B.3 C.4 D.6
2.设集合A={-1,0,1,2,3,4},B={x|x∈A且2x∈A},则集合B为________.
感悟提升 1.研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合;然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的含义.
2.利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合中的元素是否满足互异性.
考点二 集合间的基本关系
典例二
1.已知集合A={x|x2-2x-3≤0},集合B={x||x-1|≤3},集合C=eq \b\lc\{\rc\}(\a\vs4\al\c1(x|\f(x-4,x+5)≤0)),则集合A,B,C的关系为( )
A.B⊆A B.A=B
C.C⊆B D.A⊆C
2. 已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,则实数m的取值范围为________.
感悟提升 1.若B⊆A,应分B=∅和B≠∅两种情况讨论.
2.已知两个集合间的关系求参数时,关键是将两个集合间的关系转化为元素或区间端点间的关系,进而求得参数范围.注意合理利用数轴、Venn图帮助分析及对参数进行讨论.求得参数后,一定要把端点值代入进行验证,否则易增解或漏解.
考向三 集合间的基本运算
典例3
1.已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=( )
A.∅ B.S C.T D.Z
2.设全集为R,集合A={y|y=2x,x<1},B={x|y=eq \r(x2-1)},则A∩(∁RB)=( )
A.{x|-1<x<2} B.{x|0<x<1}
C.∅ D.{x|0<x<2}
3.集合M={x|2x2-x-1<0},N={x|2x+a>0},U=R.若M∩(∁UN)=∅,则a的取值范围是( )
A.(1,+∞) B.[1,+∞)
C.(-∞,1) D.(-∞,1]
感悟提升 1.进行集合运算时,首先看集合能否化简,能化简的先化简,再研究其关系并进行运算.
2.数形结合思想的应用:
(1)离散型数集或抽象集合间的运算,常借助Venn图求解;
(2)连续型数集的运算,常借助数轴求解,运用数轴时要特别注意端点是实心还是空心.
考向四 Venn图的应用
在部分有限集中,我们经常遇到元素个数的问题,常用Venn图表示两个集合的交、并、补集,借助于Venn图解决集合问题,直观简捷,事半功倍.用Card表示有限集中元素的个数,即Card(A)表示有限集A的元素个数.
典例四
1.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )
A.62% B.56% C.46% D.42%
2.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有________人.
基础题型训练
一、单选题
1.已知集合,,则( )
A.B.C.D.
2.已知集合,,若,则a的取值范围为( )
A.B.C.D.
3.设集合,,则( )
A.B.C.D.
4.已知集合,,则
A.B.
C.D.
5.设关于x的不等式的解集为A,且,,则实数m的取值范围是( )
A.B.C.D.
6.对于集合A,B,“”不成立的含义是
A.B是A的子集B.A中的元素都不是B的元素
C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A
二、多选题
7.下列关系式正确的为( )
A.B.
C.D.
8.(多选)若集合,,则集合或( )
A. B.
C.D.
三、填空题
9.已知实数集合的最大元素等于该集合的所有元素之和,则__________.
10.设全集,集合,,则图中阴影部分表示的集合为___________.
11.满足,且的集合的个数是_____________.
12.若集合有且仅有2个子集,则满足条件的实数的最小值是____.
四、解答题
13.已知集合,,若,求实数的值.
14.已知全集,,
(1);
(2)求.
15.若,且A∪B=A,求由实数a的值组成的集合.
16.集合是由形如的数构成的,试分别判断,,与集合的关系.
提升题型训练
一、单选题
1.满足条件的集合的个数为
A.6个B.7个C.8个D.9个
2.已知全集U={1,3,5,7,9},集合A={1,|a-5|,9},∁UA={5,7},则a的值是( )
A.2B.8C.-2或8D.2或8
3.已知集合,,全集,则等于( )
A.B.C.D.
4.设集合,,若,则( )
A.-1B.1C.-1或1D.0
5.已知集合,,则
A.B.C.D.
6.设集合,,则( ).
A.B.C.D.
7.集合A,B,C满足,则成立的等式是( ).
A.B.
C.D.
8.对于集合,,定义,,设,,则
A.B.
C.D.
9.已知集合,若且集合中恰有2个元素,则满足条件的集合的个数为( ).
A.1B.3C.6D.10
10.若是一个非空集合,是一个以的某些子集为元素的集合,且满足:(1);(2)对于的任意子集,当且时,有;(3)对于的任意子集当且时,有,则称是集合的一个“——集合类”例如:是集合的一个“——集合类”.已知,则所有含的“——集合类”的个数为( )
A.9B.10C.11D.12
二、多选题
11.已知集合,.若,则实数m的值为( )
A.0B.1C.-3D.3
12.已知是同时满足下列条件的集合:①;②若,则;③且,则.下列结论中正确的有( )
A.B.
C.若,则D.若,则
13.给定集合,若对于任意,,有,且,则称集合A为闭集合,以下结论正确的是( )
A.集合为闭集合;
B.集合为闭集合;
C.集合为闭集合;
D.若集合为闭集合,则为闭集合.
14.设非空集合满足:当时,有,给出如下四个命题,其中真命题是( )
A.若,则;B.若,则;
C.若,则;D.若,则
三、填空题
15.关于的方程的解集为______.
16.已知集合,,若,则由实数的所有可能的取值组成的集合为______.
17.定义有限数集中的最大元素与最小元素之差为的“长度”,如:集合的“长度”为3,集合的“长度”为0.已知集合,则的所有非空子集的“长度”之和为_________.
18.设集合是小于5的质数,则的真子集的个数为______,的非空真子集的个数为______.
名称
自然数集
正整数集
整数集
有理数集
实数集
记法
N
N*或N+
Z
Q
R
集合的并集
集合的交集
集合的补集
符号表示
A∪B
A∩B
若全集为U,则集合A的补集为∁UA
图形表示
集合表示
{x|x∈A,或x∈B}
{x|x∈A,且x∈B}
{x|x∈U,且x∉A}
专题5.2 平面向量的基本定理及坐标运算-2024年高考数学一轮复习《考点•题型 •技巧》精讲与精练: 这是一份专题5.2 平面向量的基本定理及坐标运算-2024年高考数学一轮复习《考点•题型 •技巧》精讲与精练,文件包含专题52平面向量的基本定理及坐标运算原卷版docx、专题52平面向量的基本定理及坐标运算解析版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
专题5.1 平面向量的概念及其线性运算-2024年高考数学一轮复习《考点•题型 •技巧》精讲与精练: 这是一份专题5.1 平面向量的概念及其线性运算-2024年高考数学一轮复习《考点•题型 •技巧》精讲与精练,文件包含专题51平面向量的概念及其线性运算原卷版docx、专题51平面向量的概念及其线性运算解析版docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。
微专题 指数与指数幂的运算 学案-2023届高考数学一轮《考点·题型·技巧》精讲与精练: 这是一份微专题 指数与指数幂的运算 学案-2023届高考数学一轮《考点·题型·技巧》精讲与精练,共24页。