搜索
    上传资料 赚现金
    英语朗读宝

    难关必刷02全等三角形综合(5种解题模型专练)-2023-2024学年八年级数学上学期期中期末考点大串讲(人教版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      难关必刷02全等三角形综合(5种解题模型专练)(原卷版).docx
    • 解析
      难关必刷02全等三角形综合(5种解题模型专练)(解析版).docx
    难关必刷02全等三角形综合(5种解题模型专练)(原卷版)第1页
    难关必刷02全等三角形综合(5种解题模型专练)(原卷版)第2页
    难关必刷02全等三角形综合(5种解题模型专练)(原卷版)第3页
    难关必刷02全等三角形综合(5种解题模型专练)(解析版)第1页
    难关必刷02全等三角形综合(5种解题模型专练)(解析版)第2页
    难关必刷02全等三角形综合(5种解题模型专练)(解析版)第3页
    还剩30页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    难关必刷02全等三角形综合(5种解题模型专练)-2023-2024学年八年级数学上学期期中期末考点大串讲(人教版)

    展开

    这是一份难关必刷02全等三角形综合(5种解题模型专练)-2023-2024学年八年级数学上学期期中期末考点大串讲(人教版),文件包含难关必刷02全等三角形综合5种解题模型专练原卷版docx、难关必刷02全等三角形综合5种解题模型专练解析版docx等2份试卷配套教学资源,其中试卷共107页, 欢迎下载使用。
    模型一:一线三等角

    图一
    如图一,∠D=∠BCA=∠E=90°,BC=AC。 结论:Rt△BDC≌Rt△CEA
    图二
    如图二,∠D=∠BCA=∠E,BC=AC。 结论:△BEC≌△CDA
    模型二:“手拉手”旋转模型

    图一 图二

    图三 图四 图五
    图六 图七
    模型三:截长补短
    有一类几何题其命题主要证明三条线段长段的“和”或“差”及其比例关系,这一类题目一般可以采取“截长”或“补短”的方法来进行求解。所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段与已经线段相等,然后证明其中的另一段与已知的另一段的大小关系。所谓“补短”,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等,然后求出延长后的线段与最长的已知线段关系。有的是采取截长补短后,使之构成某种特定的三角形进行求解。
    模型四:倍长中线
    图一
    图二
    图三
    3、过端点向中线作垂线
    模型五:半角模型
    过等腰三角形顶点 两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。
    常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。
    解题技巧:
    在图1中,△AEB由△AND旋转所得,可得△AEM≌△AMN,
    ∴BM+DN=MN[来源,AMB=∠AMN,B=AH
    △CMN的周长等于正方形周长的一半
    在图2中将△ABC旋转至△BEF,易得△BED≌△BCD同理得到边角之间的关系;
    总之:半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论.
    【题型专练】
    模型一:一线三等角
    一.解答题(共7小题)
    1.(2022秋•孝昌县期中)已知,在平面直角坐标系中,A,B两点的坐标分别为点A(3,0),点B(0,b),将线段AB绕点A顺时针旋转α°得到AC,连接BC.若α=90.
    (1)如图1,b=1,求点C的坐标;
    (2)如图2,若D为BC中点,连接OD.求证:OD平分∠AOB.
    2.(2022秋•浠水县期中)已知,在△ABC中,AB=AC,D,A,E三点都在直线m上,且DE=9cm,∠BDA=∠AEC=∠BAC
    (1)如图①,若AB⊥AC,则BD与AE的数量关系为 ,CE与AD的数量关系为 ;
    (2)如图②,判断并说明线段BD,CE与 DE的数量关系;
    (3)如图③,若只保持∠BDA=∠AEC,BD=EF=7cm,点A在线段DE上以2cm/s的速度由点D向点E运动,同时,点C在线段EF上以xcm/s的速度由点E向点F运动,它们运动的时间为t(s).是否存在x,使得△ABD与△EAC全等?若存在,求出相应的t的值;若不存在,请说明理由.
    3.(2022秋•和平区校级期中)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
    (1)当直线MN绕点C旋转到图1的位置时,
    求证:①△ADC≌△CEB;
    ②DE=AD+BE;
    (2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.
    4.(2022秋•岳阳楼区校级期中)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
    (1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;
    (2)当直线MN绕点C旋转到图2的位置时,直接写出DE、AD、BE的关系为:
    (3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.
    5.(2022秋•沙洋县期中)阅读理解,自主探究:
    “一线三垂直”模型是“一线三等角”模型的特殊情况,即三个等角角度为90°,于是有三组边相互垂直.所以称为“一线三垂直模型”.当模型中有一组对应边长相等时,则模型中必定存在全等三角形.
    (1)问题解决:如图1,在等腰直角△ABC中,∠ACB=90°,AC=BC,过点C作直线DE,AD⊥DE于D,BE⊥DE于E,求证:△ADC≌△CEB;
    (2)问题探究:如图2,在等腰直角△ABC中,∠ACB=90°,AC=BC,过点C作直线CE,AD⊥CE于D,BE⊥CE于E,AD=2.5cm,DE=1.7cm,求BE的长;
    (3)拓展延伸:如图3,在平面直角坐标系中,A(﹣1,0),C(1,3),△ABC为等腰直角三角形,∠ACB=90°,AC=BC,求B点坐标.
    6.(2022秋•罗山县期中)【感知模型】“一线三等角”模型是平面几何图形中的重要模型之一,请根据以下问题,把你的感知填写出来:
    ①如图1,△ABC是等腰直角三角形,∠C=90,点D为AB中点,则△AED∽ ;
    ②如图2,△ABC为正三角形,BD=CF,∠EDF=60°,则△BDE≌ ;
    ③如图3,正方形ABCD的顶点B在直线l上,分别过点A、C作AE⊥l于E,CF⊥l于F.若AE=1,CF=2,则EF的长为 .
    【模型应用】
    (2)如图4,将正方形OABC放在平面直角坐标系中,点O为原点,点A的坐标为(1,),则点C的坐标为 .
    【模型变式】
    (3)如图5所示,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CD于D,DE=4cm,AD=6cm,求BE的长.
    7.(2022秋•永年区期中)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,
    (1)当直线MN绕点C旋转到图(1)的位置时,显然有:DE=AD+BE;
    (2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD﹣BE;
    (3)当直线MN绕点C旋转到图(3)的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系.
    模型二:“手拉手”旋转模型
    一.解答题(共15小题)
    1.(2022秋•谷城县期中)已知:如图,△ABC为等边三角形,AB=6,点D是直线BC上一点,连接AD,以AD为边作等边△ADE,连接CE.
    (1)如图1,当点D在线段BC的中点时,CE= ;
    (2)如图2,当点D在BC的延长线上时,求证:△ABD≌△ACE.
    (3)在(2)的条件下探索AC,CD,CE三条线段的长度有何关系?并说明理由.
    2.(2022秋•德江县期中)如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.
    (1)求证:AD=BE;
    (2)求∠AEB的度数;
    (3)如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.
    3.(2022秋•罗山县期中)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.
    (1)问题发现:如图1,若△ABC和△ADE均是顶角为40°的等腰三角形,BC、DE分别是底边,求证:BD=CE;
    (2)拓展探究:如图2,若△ACB和△DCE均为等边三角形,点A、D、E在同一条直线上,连接BE,则∠AEB的度数为 ;线段BE与AD之间的数量关系是 ;
    (3)解决问题:如图3,若△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系并说明理由.
    4.(2022秋•张湾区期中)如图,在平面直角坐标系中,点C(3,0),点A在y轴正半轴上,点B在x轴负半轴上,AB=AC,点D是x轴上的一动点(点D不与B、C重合),∠CAB=∠EAD=90°,AD=AE,连接CE.
    (1)如图1,直接写出点A,B的坐标;
    (2)如图2,当点D在边BC上时,求证:①BC=CE+CD,②BC⊥CE;
    (3)当CD=5时,求点E的坐标.
    5.(2022秋•唐河县期中)感知:如图①,△ABC和△AED都是等腰直角三角形,∠BAC=∠DAE=90°,点B在线段AD上,点C在线段AE上,我们很容易得到BD=CE,不需证明.
    探究:如图②,将△AED绕点A逆时针旋转α(0<α<90°),连结BD和CE,此时BD=CE是否依然成立?若成立,写出证明过程;若不成立,说明理由.
    应用:如图③,当△ADE绕点A逆时针旋转,使得点D落在BC的延长线上,连结CE.
    ①∠ACE的度数为 度;
    ②线段BC、CD、CE之间的数量关系是 ;
    ③若AB=AC=,CD=1,则线段DE的长为 .
    6.(2022秋•东海县期中)【问题呈现】在Rt△ABC中,∠ACB=90°,CA=CB,点D是斜边AB上的一点,连接CD,试说明AD、BD、CD之间的数量关系,并说明理由.
    【解决策略】小敏同学思考后是这样做的:将△CAD绕点C逆时针旋转90°,得到对应的△CBE,连接DE,如图1经过推理使问题得到解决.请回答:
    (1)△DBE的形状是 ,△DCE的形状是 ;
    (2)直接写出AD、BD、CD之间的数量关系是 ;
    【方法感悟】在解决问题时,条件中若出现“等边三角形”、“等腰直角三角形”字样,可以考虑旋转某个三角形,把分散的条件或结论集中到一起,从而使问题得到解决.
    (3)如图2,在四边形ABCD中,∠BCD=45°,连接对角线AC、BD,∠ADB=90°,AD=BD,若CB=2,CD=4,求CA的长;
    (4)如图3,在四边形ABCD中,∠BAD=60°,AB=AD,若BC=5,CD=2,求A、C两点之间的最大距离.
    7.(2022秋•徐州期中)在△ABC中,AB=AC,∠BAC=90°.将一个含45°角的直角三角尺DEF按图1所示放置,使直角三角尺的直角顶点D恰好落在BC边的中点处,将直角三角尺DEF绕点D旋转,设AB交DF于点N,AC交DE于点M,示意图如图2所示.
    (1)[证明推断]求证:DN=DM;小明给出的思路:若要证明DN=DM,只需证明△BDN≌△ADM即可,请你根据小明的思路完成证明过程;
    (2)[延伸发现]连接AE,BF,如图3所示,求证:AE=BF;
    (3)[迁移应用]延长EA交DF于点P,交BF于点Q.在图3中完成如上作图过程,猜想并证明AE和BF的位置关系.
    8.(2022秋•来凤县校级期中)如图,在平面直角坐标系中,已知A(0,a)、B(﹣b,0)且a、b满足+|a﹣2b+2|=0.
    (1)求a,b的值;
    (2)求证:∠OAB=∠OBA;
    (3)若BE⊥AE,求∠AEO的度数.
    9.(2022秋•乾安县期中)(1)问题发现:如图1,如果△ACB和△CDE均为等边三角形,点A、D、E在同一直线上,连接BE.则AD与BE的数量关系为 ;∠AEB的度数为 度.
    (2)拓展探究:如图2,如果△ACB和△CDE均为等腰三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,连接BE,判断线段AE与BE的位置关系,并说明理由.
    10.(2022秋•灵山县期中)综合实践
    在学习全等三角形的知识时,数学兴趣小组发现这样一个模型:它是由两个共顶点且顶角相等的等腰三角形构成的,在相对位置变化的同时,始终存在一对全等三角形.兴趣小组成员经过研讨给出定义:如果两个等腰三角形的顶角相等,且顶角的顶点互相重合,则称此图形为“手拉手全等模型”.因为顶点相连的四条边,可以形象地看作两双手,所以通常称为“手拉手模型”,如图1,△ABC与△ADE都是等腰三角形,其中∠BAC=∠DAE,则△ABD≌△ACE(SAS).
    [初步把握]如图2,△ABC与△ADE都是等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE,则有 ≌ .
    [深入研究]如图3,已知△ABC,以AB、AC为边分别向外作等边△ABD和等边△ACE,并连接BE,CD,求证:BE=CD.
    [拓展延伸]如图4,在两个等腰直角三角形△ABC和△ADE中,AB=AC,AE=AD,∠BAC=∠DAE=90°,连接BD,CE,交于点P,请判断BD和CE的关系,并说明理由.
    11.(2022秋•淮滨县期中)(1)问题发现:如图①,△ABC和△EDC都是等边三角形,点B、D、E在同一条直线上,连接AE.
    ①∠AEC的度数为 ;
    ②线段AE、BD之间的数量关系为 ;
    (2)拓展探究:如图②,△ABC和△EDC都是等腰直角三角形、∠ACB=∠DCE=90°,点B、D、E在同一条直线上,CM为△EDC中DE边上的高,连接AE,试求∠AEB的度数及判断线段CM、AE、BM之间的数量关系,并说明理由;
    (3)解决问题:如图③,△ABC和△EDC都是等腰三角形,∠ACB=∠DCE=36°,点B、D,E在同一条直线上,请直接写出∠EAB+∠ECB的度数.
    12.(2022秋•方城县期中)(1)问题发现:
    两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,我们把具有这种规律的图形称为“手拉手”图形,
    如图1,△ABC和△ADE是顶角相等的等腰三角形,即AB=AC,AD=AE,且∠BAC=∠DAE,分别连结BD,CE.求证:BD=CE;(请在下面的证明过程中填写上理由或数学式)
    证明:∵∠BAC=∠DAE
    ∴∠BAC﹣∠CAD=∠DAE﹣∠CAD
    ∴∠BAD=∠CAE
    在△ABD和△ACE中

    ∴△ABD≌△ACE②( )
    ∴BD=CE③( )
    (2)类比探究:如图2,△ABC和△ADE都是等腰三角形,即AB=AC,AD=AE,且∠BAC=∠DAE=90°,B,C,D在同一条直线上.请判断线段BD与CE存在怎样的数量关系及位置关系,并说明理由.
    (3)问题解决:如图3,若△ACB和△DCE均为等腰直角三角形,且CA=CB,CD=CE,∠ACB=∠DCE=90°,点A,D,E在同一条直线上,CM为△DCE中DE边上的高,连接BE,若AE=7,BE=2,请直接写出CM的长,不说明理由.
    13.(2022秋•临清市期中)如图,在△ABC中,AC=10.
    (1)如图①,分别以AB,BC为边,向外作等边△ABD和等边△BCE,连接AE,CD,则AE CD(填“>”“<”或“=”);
    (2)如图②,分别以AB,BC为腰,向内作等腰△ABD和等腰△BCE,∠ABD=∠CBE且小于∠ABC,连接AE,CD,猜想AE与CD的数量关系,并说明理由;
    (3)如图③,以AB为腰向内作等腰△ABD,以BC为腰向外作等腰△BCE,且∠ABD=∠CBE,已知点A到直线DE的距离为3,AE=12,求DE的长及点D到直线AE的距离.
    14.(2022秋•阜宁县期中)【问题发现】
    (1)如图1,△ABC和△ADE均为等边三角形,点B,D,E在同一直线上,连接CE,容易发现:①∠BEC的度数为 ;②线段BD、CE之间的数量关系为 ;
    【类比探究】
    (2)如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点B,D,E在同一直线上,连接CE,试探究∠BEC的度数及线段BE、CE、DE之间的数量关系,并说明理由;
    【问题解决】
    (3)如图3,∠AOB=∠ACB=90°,OA=3,OB=7,AC=BC,求OC2的值.
    15.(2022秋•江阴市期中)在学习全等三角形的知识时,数学兴趣小组发现这样一个模型:它是由两个共顶点且顶角相等的等腰三角形构成的,在相对位置变化的同时,始终存在一对全等三角形.兴趣小组成员经过研讨给出定义:如果两个等腰三角形的顶角相等,且顶角的顶点互相重合,则称此图形为“手拉手全等模型”.因为顶点相连的四条边,可以形象地看作两双手,所以通常称为“手拉手模型”.
    (1)如图1,△ABC与△ADE都是等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE,则有 ≌ .
    (2)如图2,已知△ABC,以AB、AC为边分别向外作等边△ABD和等边△ACE,并连接BE,CD,则∠BOD= °.
    (3)如图3,在两个等腰直角三角形△ABC和△ADE中,AB=AC,AE=AD,∠BAC=∠DAE=90°,连接BD,CE,交于点P,请判断BD和CE的关系,并说明理由.
    模型三:截长补短
    1.(2023春·广东梅州·八年级校考期中)如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,交BC于点D,过D作DE⊥BA于点E,点F在AC上,且BD=DF.
    (1)求证:AC=AE;
    (2)若AB=7.4,AF=1.4,求线段BE的长.
    2.(2023春·广东深圳·八年级南山实验教育麒麟中学校考期中)如图,△ABC为等边三角形,直线l过点C,在l上位于C点右侧的点D满足∠BDC=60°
    (1)如图1,在l上位于C点左侧取一点E,使∠AEC=60°,求证:△AEC≌△CDB;
    (2)如图2,点F、G在直线l上,连AF,在l上方作∠AFH=120°,且AF=HF,∠HGF=120°,求证:HG+BD=CF;
    (3)在(2)的条件下,当A、B位于直线l两侧,其余条件不变时(如图3),线段HG、CF、BD的数量关系为 .
    3.(2022秋·湖北孝感·八年级统考期中)如图,在五边形中,,平分,.

    (1)求证:;
    (2)若,求的度数.
    4.(2023春·山东德州·八年级校考期中)如图一,四边形是正方形,点是边的中点,,且交正方形外角的平分线于点.
    (1)求证:(提示:取的中点,连接).
    (2)如图二所示,若把条件“点是边的中点”改为“点为上任意一点”,其他条件不变,那么结论是否成立呢?若成立,请你证明,若不成立,请说明理由.
    (3)如图三所示,若把条件“点是边的中点”改为“点为延长线上任意一点”,其他条件不变,那么结论是否成立呢?若成立,请你证明,若不成立,请说明理由.
    5.(2022秋·广东广州·八年级广州市第一中学校考期中)如图,是等边三角形,点分别是射线、射线上的动点,点D从点A出发沿着射线移动,点E从点B出发沿着射线移动,点同时出发并且移动速度相同,连接.
    (1)如图①,当点D移动到线段的中点时,与的长度关系是:_______.
    (2)如图②,当点D在线段上移动但不是中点时,探究与之间的数量关系,并证明你的结论.
    (3)如图③,当点D移动到线段的延长线上,并且时,求的度数.
    模型四:倍长中线
    1.(2022秋•海曙区期中)(1)【问题情境】课外兴趣小组活动时,老师提出了如下问题:如图1,在△ABC中,若AB=13,AC=9,求BC边上的中线AD的取值范围.
    小明在组内经过合作交流,得到了如下的解决方法,延长AD至点E,使DE=AD,连接BE,容易证得△ADC≌△EDB,再由“三角形的三边关系”可求得AD的取值范围是 .
    解后反思:题目中出现“中点”、“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.
    (2)【初步运用】如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且∠FAE=∠AFE.若AE=4,EC=3,求线段BF的长.
    (3)【拓展提升】如图3,在△ABC中,D为BC的中点,DE⊥DF分别交AB,AC于点E,F.求证:BE+CF>EF.
    2.(2022秋•西平县期中)如图,在等边三角形ABC中,点P为△ABC内一点,连接AP,BP,CP,将线段AP绕点A顺时针旋转60°得到AP',连接PP',BP'.
    (1)用等式表示BP'与CP的数量关系,并证明;
    (2)当∠BPC=120°时,
    ①直接写出∠P'BP的度数为 ;
    ②若M为BC的中点,连接PM,用等式表示PM与AP的数量关系,并证明.
    3.(2022秋•桐柏县期中)(1)阅读理解:
    如图①,在△ABC中,若AB=8,AC=5,求BC边上的中线AD的取值范围.
    可以用如下方法:将△ACD绕着点D逆时针旋转180°得到△EBD,在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是 ;
    (2)问题解决:
    如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
    (3)问题拓展:
    如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=100°,以C为顶点作一个50°的角,角的两边分别交AB、AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并说明理由.
    模型五:半角模型
    1.(2022秋•陵城区期中)【问题背景】
    如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,试探究图中线段BE、EF、FD之间的数量关系.
    小王同学探究此问题的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 .
    【探索延伸】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.
    【学以致用】
    如图3,四边形ABCD是边长为5的正方形,∠EBF=45°,直接写出△DEF的周长.
    2.(2022秋•牡丹江期中)问题背景:
    (1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 .
    探索延伸:
    (2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.
    3.(2022秋•南康区期中)【问题背景】
    在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,试探究图1中线段BE、EF、FD之间的数量关系.
    【初步探索】
    小亮同学认为:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,则可得到BE、EF、FD之间的数量关系是 .
    【探索延伸】
    在四边形ABCD中如图2,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,∠EAF=∠BAD,上述结论是否仍然成立?说明理由.
    【结论运用】
    如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角(∠EOF)为70°,试求此时两舰艇之间的距离.
    4.(2022秋•天门期中)【初步探索】
    (1)如图1:在四边形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF=BE+FD,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.
    小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 ;
    【灵活运用】
    (2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;
    【拓展延伸】
    (3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.

    相关试卷

    猜想02 全等三角形(5种解题模型专练)-八年级上学期数学期末考点大串讲(人教版):

    这是一份猜想02 全等三角形(5种解题模型专练)-八年级上学期数学期末考点大串讲(人教版),文件包含猜想02全等三角形5种解题模型专练原卷版docx、猜想02全等三角形5种解题模型专练解析版docx等2份试卷配套教学资源,其中试卷共141页, 欢迎下载使用。

    期中真题必刷压轴60题(14个考点专练)-2023-2024学年八年级数学上学期期中期末考点大串讲(人教版):

    这是一份期中真题必刷压轴60题(14个考点专练)-2023-2024学年八年级数学上学期期中期末考点大串讲(人教版),文件包含期中真题必刷压轴60题14个考点专练原卷版docx、期中真题必刷压轴60题14个考点专练解析版docx等2份试卷配套教学资源,其中试卷共110页, 欢迎下载使用。

    期中真题必刷基础60题(33个考点专练)-2023-2024学年八年级数学上学期期中期末考点大串讲(人教版):

    这是一份期中真题必刷基础60题(33个考点专练)-2023-2024学年八年级数学上学期期中期末考点大串讲(人教版),文件包含期中真题必刷基础60题33个考点专练原卷版docx、期中真题必刷基础60题33个考点专练解析版docx等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map