四川省成都市武侯区重点中学2023-2024学年八年级上学期期中数学试题(无答案)
展开注意事项:
1.本试卷分A卷和B卷,A卷满分100分,B卷满分50分,考试时间120分钟.
2.请使用答题卡作答.
3.在作答前,务必将自己的姓名、学号、班级涂写在试题卷和答题卡规定的地方.考试结束后,监考员仅将答题卡收回.
4.选择题部分必须使用2B铅笔填涂;非选择题部分必须使用0.5毫米黑色签字笔书写,字体工整、笔迹清楚.
5.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题均无效.
6.保持答题卡清洁,不得折叠、污染、破损等.
A卷(共100分)
第Ⅰ卷(选择题,共32分)
一、选择题(本大题共8个小题,每小题4分,共32分.每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)
1.的倒数是( )
A.B.C.D.
2.已知a,b,c为△ABC的三边,在下列条件中不能判定△ABC是直角三角形的是( )
A.∠A+∠B=∠CB.a=5,b=12,c=13
C.D.
3.计算的结果是( )
A.3B.C.D.
4.在平面直角坐标系中,若点A(m,3)与点B(2,n)关于x轴对称,则m+n的值为( )
A.-1B.0C.1D.3
5.若一个边长为a正方形的面积为30,则a的取值范围是( )
A.5.0<a<5.2B.5.2<a<5.5C.5.5<a<5.7D.5.7<a<6.0
6.如图,四个全等的直角三角形围成一个大正方形.中间是个小正方形.这个图形是我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,现分别连接大、小正方形的四组顶点得到图2的“风车”图案(阴影部分).若图1中的四个直角三角形的较长直角边为9,较短直角边为5,则图2中的“风车”图案的周长为( )
A.B.C.D.
7.下列命题正确的是( )
A.所有的无限小数都是无理数
B.因为,所以0.3,0.4,0.5是一组勾股数
C.若实数a,b满足,则
D.若一个正数x的算数平方根是y,则y是x的函数
8.在平面直角坐标系中,若点P(m,n)在第二象限,那么一次函数y=mx-n的图象大致是( )
A.B.C.D.
第Ⅱ卷(非选择题,共68分)
二、填空题(本大题共5个小题,每小题4分,共20分.答案写在答题卡上)
9.若,则x-y=______.
10.已知点M(4,-5)与点N(a-2,a+1)所在直线与x轴平行,那么a的值为______.
11.若直角三角形两条直角边的长分别为3和6,则该直角三角形斜边上的高为______.
12.已知点P(-4,a)和点Q(2,b)是一次函数图象上的两点,则a与b的大小关系为a______b(填“>”,“<”或“=”).
13.如图,在Rt△ABC中,∠BAC=90°,按以下步骤作图:分别以点A和点C为圆心,以大于长为半径作弧,两弧相交于M,N两点,直线MN交BC边于点D,连接AD.若AC=8,AD=5,则AB的长为______.
三、解答题(本大题共5个题,共48分.解答过程写在答题卡上)
14.(本小题满分12分,每题6分)
(1)计算:;
(2)已知,,求代数式的值.
15.(本小题满分8分)
如图是人们喜爱的秋千,已知秋千OA静止的时候,踏板A离地高AC为0.5米,将它往前推进2米到B(即EB的长为2),此时踏板离地高BD为1米,求秋千绳索OA的长度.
16.(本小题满分8分)
为了更好的开展古树名木的系统保护工作,某公园对园内的4棵百年古树都利用坐标确定了位置,并且定期巡视.
(1)请在如图所示的正方形网格中建立平面直角坐标系xOy,使得古树A,B的位置分别表示为A(2,1),B(5,5);
(2)在(1)建立的平面直角坐标系xOy中.
①表示古树C的位置的坐标为______,并在网格中标出古树E(4,-1)的位置;
②现需要在沿y轴的道路某处P点向古树A,B修建两条步道,使得点P到古树A,B的距离和最小.
请在网格中画出点P(保留作图痕迹,不写作图过程);
该距离和的最小值为______.
17.(本小题满分10分)
如图,在△ABC中,∠ACB=45°,AD⊥BC于点D,CE⊥AB于点E,CE交AD于点F.
(1)求证:BD=FD;
(2)若BD=2,当点E为AB边中点时,求AF的长.
18.(本小题满分10分)
如图,在平面直角坐标系xOy中,直线y=-x-4分别交x,y轴于点A,C,取y轴上一点B(0,2),作直线AB.
(1)求直线AB的函数表达式;
(2)P为直线AB上一动点,连接PC.
①当时,求点P的坐标;
②当∠BCP=∠BAO时,求线段PC的长.
B卷(共50分)
一、填空题(本大题共5个小题,每小题4分,共20分.答案写在答题卡上)
19.若2a+1和2-a的立方根互为相反数,则a=______.
20.如图,在平面直角坐标系中,A(1,0),M(-2,3),连接AM,以点A为圆心,以AM长为半径画弧,交x轴的负半轴于点N,则点N的坐标为______.
(第20题图)
21.某仓库按如图方式堆放15只空油桶,每只油桶底面的直径均为0.5m,现要给它们盖一个遮雨棚,请根据截面示意图计算,遮雨棚的高度至少为______米(计算结果保留根号).
(21题图)
22.如图,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,分别在AB,AC边上取点E,F,将△AEF沿直线EF翻折得到,使得点A的对应点恰好落在CB延长线上,当时,AE的长为______,当时,AF的长为______.
23.定义:在平面直角坐标系xOy中,若点P关于直线m的对称点在图形Q的内部(不包含边界),则称点P是图形Q关于直线m的“伴随点”.如图,已知A(2,2),B(5,1),C(3,5),直线l:y=-x+b,若原点O是△ABC关于直线l的“伴随点”,则b的取值范围是______.
二、解答题(本大题共3个小题,共30分.解答过程写在答题卡上)
24.(本小题满分8分)
把一个函数自变量的每一个值与对应的函数值分别作为点的横坐标和纵坐标,在直角坐标系内描出相应的点,所有这些点组成的图形叫做该函数的图象.函数图象是函数的重要表示方法,借助图象能直观地帮助我们分析函数特征.
(1)根据绘制函数图象的一般步骤,请在如图网格中画出函数的图象;
(2)y轴正半轴上有一动点P(0,t),过P作x轴的平行线l,当直线l与函数的图象所围成的封闭图形的周长为5时,求t的值.
25.(本小题满分10分)
在平面直角坐标系xOy中,过一、二、三象限的直线y=kx+b与x轴交于点A,与y轴交于点B,且OB=2OA,.
(1)求直线AB的函数表达式;
(2)在x轴正半轴取一点C,连接BC,当∠ABC=45°时,求点C的坐标;
(3)在(2)的条件下,直线x=m分别交直线AB,直线CB和x轴于点P,Q,M,试探究:是否存在常数m,使点P,Q,M中的一点是其余两点所成线段的中点?若存在,求出m的值;若不存在,请说明理由.
26.(本小题满分12分)
从特殊到一般再到特殊是数学学习的重要模式,某数学兴趣小组拟做以下探究学习.
在Rt△ABC中,∠ACB=90°,AC=BC,将线段BC绕点C顺时针旋转()得到线段DC,取AD中点H,直线CH与直线BD交于点E,连接AE.
【感知特殊】
(1)如图1,当时,小组探究得出:△AED为等腰直角三角形,请写出证明过程;
【探究一般】
(2)①如图2,当时,试探究线段EA,EC,EB之间的数量关系并证明;
②当时,直接写出线段EA,EC,EB之间的数量关系.
【应用迁移】
(3)已知,在线段DC的旋转过程中,当AE=3时,求线段EC的长.
四川省成都市武侯区武侯区领川外国语学校2023-2024学年八年级上学期12月月考数学试题(): 这是一份四川省成都市武侯区武侯区领川外国语学校2023-2024学年八年级上学期12月月考数学试题(),共5页。试卷主要包含了下列运算错误的是等内容,欢迎下载使用。
四川省成都市武侯区2023-2024学年七年级上学期期末数学试题(无答案): 这是一份四川省成都市武侯区2023-2024学年七年级上学期期末数学试题(无答案),共5页。试卷主要包含了考生使用答题卡作答,若,,则代数式的值为,某商店举办促销活动等内容,欢迎下载使用。
四川省成都市武侯区2023-2024学年八年级上学期期末数学试题(含答案): 这是一份四川省成都市武侯区2023-2024学年八年级上学期期末数学试题(含答案),共28页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。