终身会员
搜索
    上传资料 赚现金
    (小白高考)新高考数学(零基础)一轮复习教案2.5《对数与对数函数》 (2份打包,原卷版+教师版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 教案
      (小白高考)新高考数学(零基础)一轮复习教案2.5《对数与对数函数》 (教师版).doc
    • 教案
      (小白高考)新高考数学(零基础)一轮复习教案2.5《对数与对数函数》 (原卷版).doc
    (小白高考)新高考数学(零基础)一轮复习教案2.5《对数与对数函数》 (2份打包,原卷版+教师版)01
    (小白高考)新高考数学(零基础)一轮复习教案2.5《对数与对数函数》 (2份打包,原卷版+教师版)02
    (小白高考)新高考数学(零基础)一轮复习教案2.5《对数与对数函数》 (2份打包,原卷版+教师版)03
    (小白高考)新高考数学(零基础)一轮复习教案2.5《对数与对数函数》 (2份打包,原卷版+教师版)01
    (小白高考)新高考数学(零基础)一轮复习教案2.5《对数与对数函数》 (2份打包,原卷版+教师版)02
    (小白高考)新高考数学(零基础)一轮复习教案2.5《对数与对数函数》 (2份打包,原卷版+教师版)03
    还剩9页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (小白高考)新高考数学(零基础)一轮复习教案2.5《对数与对数函数》 (2份打包,原卷版+教师版)

    展开
    这是一份(小白高考)新高考数学(零基础)一轮复习教案2.5《对数与对数函数》 (2份打包,原卷版+教师版),文件包含小白高考新高考数学零基础一轮复习教案25《对数与对数函数》教师版doc、小白高考新高考数学零基础一轮复习教案25《对数与对数函数》原卷版doc等2份教案配套教学资源,其中教案共20页, 欢迎下载使用。

    1.对数的运算性质与对数的换底公式相结合考查对数的运算,凸显数学运算的核心素养.
    2.与不等式等问题相结合考查对数函数的图象及其应用,凸显直观想象、数学运算的核心素养.
    3.与不等式等问题相结合考查对数函数的单调性、值域等性质,凸显直观想象、逻辑推理和数学运算的核心素养.
    [理清主干知识]
    1.对数
    2.对数函数的图象与性质
    3.底数的大小决定了图象相对位置的高低
    不论是a>1还是0<a<1,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大,如图,0在x轴上侧,图象从左到右相应的底数由小变大;
    在x轴下侧,图象从右到左相应的底数由小变大.
    (无论在x轴的上侧还是下侧,底数都按顺时针方向变大)
    4.反函数
    指数函数y=ax(a>0且a≠1)与对数函数y=lgax(a>0且a≠1)互为反函数,它们的图象关于直线y=x对称.
    [澄清盲点误点]
    一、关键点练明
    1.计算:2 SKIPIF 1 < 0 +lg 8+eq \f(3,2)lg 25+(eq \f(9,25)) SKIPIF 1 < 0 =________.
    2.计算lg225·lg34·lg59=________.
    3.已知函数y=lga(x﹣3)﹣1的图象恒过定点P,则点P的坐标是________.
    4.函数y=eq \r(lg2x-1)的定义域为________.
    5.函数y=lg SKIPIF 1 < 0 (3x﹣1)的单调递减区间为________.
    二、易错点练清
    1.有下列结论:①lg(lg 10)=0;②lg(ln e)=0;③若lg x=1,则x=10;④若lg22=x,则x=1;⑤若lgmn·lg3m=2,则n=9.其中正确结论的序号是____________.
    2.已知lg x+lg y=2lg(x﹣2y),则eq \f(x,y)=________.
    3.若函数y=lgax(a>0,a≠1)在[2,4]上的最大值与最小值的差是1,则a=________.
    考点一 对数式的化简与求值
    [典例] (1)设alg34=2,则4﹣a=( )
    A.eq \f(1,16) B.eq \f(1,9) C.eq \f(1,8) D.eq \f(1,6)
    (2)计算下列各式的值:
    ①lg535+2lg SKIPIF 1 < 0 eq \r(2)﹣lg5eq \f(1,50)﹣lg514; ②[(1﹣lg63)2+lg62·lg618]÷lg64.
    [方法技巧]
    解决对数运算问题的常用方法
    (1)将真数化为底数的指数幂的形式进行化简.
    (2)将同底对数的和、差、倍合并.
    (3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.
    (4)利用常用对数中的lg 2+lg 5=1.
    [针对训练]
    1.(多选)若10a=4,10b=25,则( )
    A.a+b=2 B.b﹣a=1 C.ab>8lg22 D.b﹣a>lg 6
    2.计算:eq \f(1-lg632+lg62·lg618,lg64)=________.
    3.已知lg23=a,3b=7,则lg3eq \r(7)2eq \r(21)的值为________.
    考点二 对数函数的图象及应用
    考法(一) 对数函数图象的辨析
    [例1]在同一直角坐标系中,函数y=eq \f(1,ax),y=lga(x+eq \f(1,2))(a>0,且a≠1)的图象可能是( )
    [方法技巧]
    研究对数型函数图象的思路
    研究对数型函数的图象时,一般从最基本的对数函数的图象入手,通过平移、伸缩、对称变换得到.特别地,要注意底数a>1或0考法(二) 对数函数图象的应用
    [例2] 当0A.(0,eq \f(\r(2),2)) B.(eq \f(\r(2),2),1) C.(1,eq \r(2)) D.(eq \r(2),2)
    [方法技巧]
    与对数型函数有关的方程或不等式问题常常结合对数函数的图象来解决,即数形结合法,应用时要准确画出图象,把方程根、不等式的解等问题转化为函数图象之间的问题.
    [针对训练]
    1.在同一直角坐标系中,函数f(x)=xa(x>0)与g(x)=lgax的图象可能是( )
    2.已知函数f(x)=|ln x|.若0A.(4,+∞) B.[4,+∞) C.(5,+∞) D.[5,+∞)
    3.已知函数f(x)=|lg SKIPIF 1 < 0 x|的定义域为[eq \f(1,2),m],值域为[0,1],则m的取值范围为________.
    考点三 对数函数的性质及应用
    考法(一) 与对数函数有关的函数定义域问题
    [例1] 若函数y=lg2(mx2﹣2mx+3)的定义域为R,则实数m的取值范围是( )
    A.(0,3) B.[0,3) C.(0,3] D.[0,3]
    [方法技巧]
    已知f(x)=lga(px2+qx+r)(a>0,且a≠1)的定义域为R,求参数范围时,要注意分p=0,p≠0讨论.同时p≠0时应结合图象说明成立条件.
    考法(二) 与对数函数有关的比较大小问题
    [例2] (1)设a=30.7,b=(eq \f(1,3))﹣0.8,c=lg0.70.8,则a,b,c的大小关系为( )
    A.a(2)若2a+lg2a=4b+2lg4b,则( )
    A.a>2b B.a<2b C.a>b2 D.a<b2
    [方法技巧] 对数函数值大小比较的方法
    考法(三) 与对数函数有关的不等式问题
    [例3] 设函数f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(lg2x,x>0,,lg\f(1,2)-x,x<0.))若f(a)>f(﹣a),则实数a的取值范围是( )
    A.(﹣1,0)∪(0,1) B.(﹣∞,﹣1)∪(1,+∞)
    C.(﹣1,0)∪(1,+∞) D.(﹣∞,﹣1)∪(0,1)
    [方法技巧]
    简单对数不等式问题的求解策略
    (1)解决简单的对数不等式,应先利用对数的运算性质化为同底数的对数值,再利用对数函数的单调性转化为一般不等式求解.
    (2)对数函数的单调性和底数a的值有关,在研究对数函数的单调性时,要按01进行分类讨论.
    (3)某些对数不等式可转化为相应的函数图象问题,利用数形结合法求解.
    [针对训练]
    1.(多选)设函数y=ln(x2﹣x+1),则下列命题中正确的是( )
    A.函数的定义域为R B.函数是增函数
    C.函数的值域为R D.函数的图象关于直线x=eq \f(1,2)对称
    2.已知55<84,134<85.设a=lg53,b=lg85,c=lg138,则( )
    A.a3.已知奇函数f(x)在R上是增函数,g(x)=xf(x),若a=g(﹣lg25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为( )
    A.a4.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=lg2(x+1),则满足不等式f(a﹣2a2)+4>0的实数a的取值范围是________.
    5.已知lgaeq \f(3,4)<1,那么a的取值范围是________.
    eq \a\vs4\al([课时跟踪检测])
    一、基础练——练手感熟练度
    1.lg29·lg32+lgaeq \f(5,4)+lga(eq \f(4,5)a)(a>0,且a≠1)的值为( )
    A.2 B.3 C.4 D.5
    2.函数y=eq \r(lg SKIPIF 1 < 0 2x-1)的定义域是( )
    A.[1,2] B.[1,2) C.[eq \f(1,2),1] D.(eq \f(1,2),1]
    3.设a=lg3π,b=lg2eq \r(3),c=lg3eq \r(2),则a,b,c的大小关系是( )
    A.a>b>c B.a>c>b C.b>a>c D.b>c>a
    4.(多选)已知函数f(x)=lg SKIPIF 1 < 0 (x+eq \f(1,x)),则下列结论正确的是( )
    A.f(x)的定义域为(0,+∞) B.f(x)的值域为[﹣1,+∞)
    C.f(x)是奇函数 D.f(x)在(0,1)上单调递增
    5.已知a>0,且a≠1,函数y=lga(2x﹣3)+eq \r(2)的图象恒过点P.若点P也在幂函数f(x)的图象上,则f(x)=________.
    6.函数y=lg2|x+1|的单调递减区间为__________,单调递增区间为__________.
    二、综合练——练思维敏锐度
    1.已知函数f(x)=lg(eq \r(1+4x2)+2x)+2,则f(ln 2)+f(lneq \f(1,2))=( )
    A.4 B.2 C.1 D.0
    2.(多选)已知函数f(x)=(lg2x)2﹣lg2x2﹣3,则下列说法正确的是( )
    A.f(4)=﹣3
    B.函数y=f(x)的图象与x轴有两个交点
    C.函数y=f(x)的最小值为﹣4
    D.函数y=f(x)的最大值为4
    3.若2x﹣2y<3﹣x﹣3﹣y,则( )
    A.ln(y﹣x+1)>0 B.ln(y﹣x+1)<0 C.ln|x﹣y|>0 D.ln|x﹣y|<0
    4.设函数f(x)=lga|x|(a>0,且a≠1)在(﹣∞,0)上单调递增,则f(a+1)与f(2)的大小关系是( )
    A.f(a+1)>f(2) B.f(a+1)C.f(a+1)=f(2) D.不能确定
    5.(多选)如果函数f(x)=lga|x﹣1|在(0,1)上是减函数,那么( )
    A.f(x)在(1,+∞)上递增且无最大值
    B.f(x)在(1,+∞)上递减且无最小值
    C.f(x)在定义域内是偶函数
    D.f(x)的图象关于直线x=1对称
    6.5G技术的数学原理之一便是著名的香农公式:C=Wlg2(1+eq \f(S,N)).它表示:在受噪声干扰的信道中,最大信息传递速率C取决于信道带宽W、信道内信号的平均功率S、信道内部的高斯噪声功率N的大小,其中eq \f(S,N)叫做信噪比.按照香农公式,若不改变带宽W,而将信噪比eq \f(S,N)从1 000提升至2 000,则C大约增加了( )
    A.10% B.30% C.50% D.100%
    7.已知函数f(x)=lga(2x﹣a)在区间[eq \f(1,2),eq \f(2,3)]上恒有f(x)>0,则实数a的取值范围是( )
    A.(eq \f(1,3),1). B.[eq \f(1,3),1). C.(eq \f(2,3),1). D.[eq \f(2,3),1)
    8.如果函数f(x)的图象与函数g(x)=ex的图象关于直线y=x对称,则f(4x﹣x2)的单调递增区间为________.
    9.已知函数f(x)是定义在R上的偶函数,f(0)=0,当x>0时,f(x)=lg SKIPIF 1 < 0 x.
    (1)求函数f(x)的解析式;
    (2)解不等式f(x2﹣1)>﹣2.
    10.已知函数f(x)=lg(x+eq \f(a,x)﹣2>0),其中a是大于0的常数.
    (1)求函数f(x)的定义域;
    (2)当a∈(1,4)时,求函数f(x)在[2,+∞)上的最小值;
    (3)若对任意x∈[2,+∞)恒有f(x)>0,试确定a的取值范围.
    概念
    如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=lgaN,其中a叫做对数的底数,N叫做真数,lgaN叫做对数式
    性质
    对数式与指数式的互化:ax=N⇔x=lgaN
    lga1=0,lgaa=1,algaN=N
    运算
    法则
    lga(M·N)=lgaM+lgaN
    a>0,且a≠1,M>0,N>0
    lgaeq \f(M,N)=lgaM﹣lgaN
    lgaMn=nlgaM(n∈R)
    换底
    公式
    lgab=eq \f(lgcb,lgca)(a>0,且a≠1,c>0,且c≠1,b>0)
    y=lgax
    a>1
    0图象
    性质
    定义域为(0,+∞)
    值域为R
    过定点(1,0),即x=eq \a\vs4\al(1)时,y=eq \a\vs4\al(0)
    当x>1时,y>0;
    当x>1时,y<0;
    当0当00
    在区间(0,+∞)上是增函数
    在区间(0,+∞)上是减函数
    单调性法
    在同底的情况下直接得到大小关系,若不同底,先化为同底
    中间量
    过渡法
    寻找中间数联系要比较的两个数,一般是用“0”,“1”或其他特殊值进行“比较传递”
    图象法
    根据图象观察得出大小关系
    相关教案

    (小白高考)新高考数学(零基础)一轮复习教案8.6《抛物线》 (2份打包,原卷版+教师版): 这是一份(小白高考)新高考数学(零基础)一轮复习教案8.6《抛物线》 (2份打包,原卷版+教师版),文件包含小白高考新高考数学零基础一轮复习教案86《抛物线》教师版doc、小白高考新高考数学零基础一轮复习教案86《抛物线》原卷版doc等2份教案配套教学资源,其中教案共18页, 欢迎下载使用。

    (小白高考)新高考数学(零基础)一轮复习教案8.5《双曲线》 (2份打包,原卷版+教师版): 这是一份(小白高考)新高考数学(零基础)一轮复习教案8.5《双曲线》 (2份打包,原卷版+教师版),文件包含小白高考新高考数学零基础一轮复习教案85《双曲线》教师版doc、小白高考新高考数学零基础一轮复习教案85《双曲线》原卷版doc等2份教案配套教学资源,其中教案共23页, 欢迎下载使用。

    (小白高考)新高考数学(零基础)一轮复习教案8.4《椭圆》 (2份打包,原卷版+教师版): 这是一份(小白高考)新高考数学(零基础)一轮复习教案8.4《椭圆》 (2份打包,原卷版+教师版),文件包含小白高考新高考数学零基础一轮复习教案84《椭圆》教师版doc、小白高考新高考数学零基础一轮复习教案84《椭圆》原卷版doc等2份教案配套教学资源,其中教案共21页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        (小白高考)新高考数学(零基础)一轮复习教案2.5《对数与对数函数》 (2份打包,原卷版+教师版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map