终身会员
搜索
    上传资料 赚现金

    五年级奥数——复合应用题(剖析版)

    立即下载
    加入资料篮
    五年级奥数——复合应用题(剖析版)第1页
    五年级奥数——复合应用题(剖析版)第2页
    五年级奥数——复合应用题(剖析版)第3页
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    五年级奥数——复合应用题(剖析版)

    展开

    这是一份五年级奥数——复合应用题(剖析版),共10页。试卷主要包含了五年级有六个班,每班人数相等,有面值分别为拾元,有160个机器零件,平均分给甲等内容,欢迎下载使用。
    掌握解答应用题的一般步骤,能用综合算式解答一般应用题;
    培养分析问题和解答问题的能力。
    知识梳理

    一般复合应用题往往是有两组或两组以上的数量关系交织在一起,有的已知条件是间接的,数量关系比较复杂,叙述的方式和顺序也比较多样。因此,一般应用题没有明显的结构特征和解题规律可循。解答一般应用题时,可以借助线段图、示意图、直观演示手段帮助分析。在分析应用题的数量关系时,我们可以从条件出发,逐步推出所求问题(综合法);也可以从问题出发,找出必须的两个条件(分析法)。在实际解时,可以根据题中的已知条件,灵活运用这两种方法。
    典例分析

    考点一:简单的一般应用题
    对于简单的一般应用题,我们在解题过程中只需要读懂题目所表达的意思,根据题目给出的数量关系列出式子即可。
    例1、五年级有六个班,每班人数相等。从每班选16人参加少先队活动,剩下的同学相当于原来4个班的人数。原来每班多少人?
    【解析】从每班选16人参加少先队活动,6个班共选16×6=96(人)。剩下的同学相当于原来4个班的人数,那么,96人就相当于原来(6-4)个班人人数,所以,原来每班96÷2=48(人)。
    6×6÷(6-4)=48(人)
    答:原来每班48人。
    例2、某车间按计划每天应加工50个零件,实际每天加工56个零件。这样,不仅提前3天完成原计划加工零件的任务,而且还多加工了120个零件。这个车间实际加工了多少个零件?
    【解析】如果按原计划的天数加工,加工的零件就会比原计划多56×3+120=288(个)。为什么会多加工288个呢?是因为每天多加工了56-50=6(个)。因此,原计划加工的天数是288÷6=48(天),实际加工了50×48+120=1520(个)零件。

    例3、甲、乙二人加工零件。甲比乙每天多加工6个零件,乙中途停了15天没有加工。40天后,乙所加工的零件个数正好是甲的一半。这时两人各加工了多少个零件?
    【解析】甲工作了40天,而乙停止了15天没有加工,乙只加工了25天,所以他加工的零件正好是甲的一半,也就是甲20天加工的零件和乙25天加工的零件同样多。由于甲每天比乙多加工6个,20天一共多加工6×20=120(个)。这120个零件相当于乙25-20=5(天)加工的个数,乙每天加工120÷(25-20)=24(个)。乙一共加工了24×25=600(个),甲一共加工了600×2=1200(个)。
    例4、服装厂要加工一批上衣,原计划20天完成任务。实际每天比计划多加工60件,照这样做了15天,就超过原计划件数350件。原计划加工上衣多少件?
    【解析】由于每天比计划多加工60件,15天就比原计划的15天多加工60×15=900(件),这时已超过计划件数350件,900件中去掉这350件,剩下的件数就是原计划(20-15)天中的工作量。所以,原计划每天加工上衣(900-350)÷(20-15)=110(件),原计划加工110×20=2200(件)。
    例5、王师傅原计划每天做60个零件,实际每天比原计划多做20个,结果提前5在完成任务。王师傅一共做了多少个零件?
    【解析】按实际做法再做5天,就会超产(60+20)×5=400(个)。为什么会超产400个呢?是因为每天多生产了20个,400里面有几个20,就是原计划生产几天。400÷20=20(天),因此,王师傅一共做了60×20=1200(个)零件。
    考点二:较复杂的一般应用题
    较复杂的一般应用题,往往具有两组或两组以上的数量关系交织在一起,但是,再复杂的应用题都可以通过“转化”向基本的问题靠拢。因此,我们在解答一般应用题时要善于分析,把复杂的问题简单化,从而正确解答。
    例1、把一条大鱼分成鱼头、鱼身和鱼尾三部分。鱼尾重4千克,鱼头的重量等于鱼尾的重量加鱼身一半的重量,而鱼身的重量等于鱼头的重量加上鱼尾的重量。这条鱼重多少千克?
    【解析】根据“鱼身的重量等于鱼头的重量加上鱼尾的重量”和“鱼尾重4千克”这两个条件可知鱼身的重量比鱼头的重量多4千克,而又知“鱼头的重量等于鱼尾的重量加鱼身一半的重量”,可画线段如下:
    4千克
    鱼头:
    鱼身:
    4千克
    从图中可以看出,鱼身的一半是4+4=8(千克)
    (1)鱼身重 (4+4)×2=16(千克)
    (2)鱼头重 16-4=12(千克)
    (3)鱼重 12+16+4=32(千克)
    例2、工程队要铺设一段地下排水管道,用长管子铺需要25根,用短管子铺需要35根。已知这两种管子的长相差2米,这段排水管道长多少米?
    【解析】因为每根长管子比每根短管子长2米,25根长管子就比25根短管子长50米。而这50米就相当于(35-25)根短管子的长度。
    因此,每根短管子的长度就是50÷(35-25)=5(米),这段排水管道的长度应是5×35=175(米)。
    例3、甲、乙、丙三人拿出同样多的钱买一批苹果,分配时甲、乙都比丙多拿24千克。结帐时,甲和乙都要付给丙24元,每千克苹果多少元?
    【解析】三人拿同样多的钱买苹果应该分得同样多的苹果。24×2÷3=16(千克),也就是丙少拿16千克苹果,所以得到24×2=48元。每千克苹果是48÷16=3(元)。
    例4、甲城有177吨货物要跑一趟运到乙城。大卡车的载重量是5吨,小卡车的载重量是2吨,大、小卡车跑一趟的耗油量分别是10升和5升。用多少辆大卡车和小卡车来运输时耗油最少?
    【解析】大汽车一次运5吨,耗油10升,平均运1吨货耗油10÷5=2(升);小汽车一次运2吨,耗油5升,平均运1吨货耗油5÷2=2.5(升)。显然,为耗油量最少应该尽可能用大卡车。177÷5=35(辆)……2吨,余下的2吨正好用小卡车运。因此,用35辆大汽车和1辆小汽车运耗油量最少。
    例5、有一栋居民楼,每家都订2份不同的报纸,该居民楼共订了三种报纸,其中北京日报34份,江海晚报30份,电视报22份。那么订江海晚报和电视报的共有多少家?
    【解析】这栋楼共订报纸34+30+22=86(份),因为每家都订2份不同的报纸,所以一共有86÷2=43家。在这43家居民中,有34家订了北京日报,剩下的9家居民一定是订了江海晚报和电视报。

    例6、一艘轮船发生漏水事故,立即安装两台抽水机向外抽水,此时已进水800桶。一台抽水机每分钟抽水18桶,另一台每分钟抽水14桶,50分钟把水抽完。每分钟进水多少桶?
    【解析】50分钟内,两台抽水机一共能抽水(18+14)×50=1600(桶)。1600桶水中,有800桶是开始抽之前就漏进的,另800桶是50分钟又漏进的,因此,每分钟漏进水800÷50=16(桶)。
    考点三:复合应用题
    解答一般应用题时,可以按下面的步骤进行:
    1、弄清题意,找出已知条件和所求问题;
    2、分析已知条件和所求问题之间的关系,找出解题的途径;
    3、拟定解答计划,列出算式,算出得数;
    4、检验解答方法是否合理,结果是否正确,最后写出答案。
    例1、甲、乙两工人生产同样的零件,原计划每天共生产700个。由于改进技术,甲每天多生产100个,乙的日产量提高了1倍,这样二人一天共生产1020个。甲、乙原计划每天各生产多少个零件?
    【解析】二人实际每天比原计划多生产1020-700=320(个)。这320个零件中,有100个是甲多生产的,那么320-100=220(个)就是乙日产量的1倍,即乙原来的日产量,甲原来每天生产700-220=480(个)。
    例2、把一根竹竿插入水底,竹竿湿了40厘米,然后将竹竿倒转过来插入水底,这时,竹竿湿的部分比它的一半长13厘米。求竹竿的长。
    【解析】因为竹竿先插了一次,湿了40厘米,倒转过来再插一次又湿了40厘米,所以湿了的部分是40×2=80(厘米)。这时,湿的部分比它的一半长13厘米,说明竹竿的长度是(80-13)×2=134(厘米)。
    例3、将一根电线截成15段。一部分每段长8米,另一部分每段长5米。长8米的总长度比长5米的总长度多3米。这根铁丝全长多少米?
    【解析】设这15段中有X段是8米长的,则有(15-X)段是5米长的。然后根据“8米的总长度比5米的总长度多3米”列出方程,并进行解答。
    例4、甲、乙两名工人加工一批零件,甲先花去2.5小时改装机器,因此前4小时甲比乙少做400个零件。又同时加工4小时后,甲总共加工的零件反而比乙多4200个。甲、乙每小时各加工零件多少个?
    【解析】(1)在后4小时内,甲一共比乙多加工了4200+400=4600(个)零件,甲每小时比乙多加工4600÷4=1150个零件。
    (2)在前4小时内,甲实际只加工了4-2.5=1.5小时,甲1.5小时比乙1.5小时应多做1150×1.5=1725个零件,因此,1725+400=2125个零件就是乙2.5小时的工作量,即乙每小时加工2125÷2.5=850个,甲每小时加工850+1150=2000个。
    例5、加工一批零件,单给甲加工需10小时,单给乙加工需8小时。已知甲每小时比乙少做3个零件,这批零件一共有多少个?
    【解析】因为甲每小时比乙少做3个零件,8小时就比乙少做3×8=24(个)零件,所以,24个零件就是甲(10-8)小时的工作量。甲每小时加工24÷(10-8)=12(个),这批零件一共有12×10=120(个)。
    实战演练

    课堂狙击
    1、做一批零件,原计划每天生产40个,实际每天比原计划多生产10个,结果提前5天完成任务,原计划要生产多少个零件?
    【解析】 40×5÷10 = 20(天)
    (40+10)×20 = 1000(个)
    2、甲、乙两个车间都要安装240台电机,乙车间每小时安装24台,当甲车间完成任务时,乙车间还有48台没有装好,甲车间每小时装多少台?
    【解析】 240÷【(240-48)÷24】= 30(台)
    3、一堆煤,原来每天烧1.8吨,可以烧30天。技术革新后,这堆煤能多烧6天,技术革新后每天少烧多少吨煤?
    【解析】1.8-1.8×30÷(30+6)= 0.3(吨)
    4、亮亮买了一批纸,订了一本练习册后还剩下30张纸,计划30天用完,25天后,用完了练习册又10张纸,这本练习册是多少张纸?
    【解析】(30-10)÷(30-25)= 4(张)
    4×25 -10 = 90(张)
    5、4辆大卡车5次运煤80吨,3辆小卡车8次运煤36吨,现有51吨煤,用1辆大卡车和3辆小卡车同时运,需运几次才能运完?
    【解析】51÷(80÷4÷5+36÷8)= 6(次)
    6、一次速算比赛共有100道题,李明一分钟做了3道题,张强做5道题比李明少用10秒钟,那么,张强做完100道题时,李明做完了几道题?
    【解析】60÷3 = 20(秒)
    20-10÷5 = 18(秒)
    18×100÷20 = 90(道)
    7、甲、乙装订练习本,甲装订2小时后乙才开始,因此,前3小时甲比乙多装订了120本,又同时装订了3小时后,乙比甲多装订了600本,求每小时各装订多少本?
    【解析】(600+120+120)÷2 = 420(本)……乙
    [420×(3-2)+120]÷3 = 180(本)……甲
    8、有面值分别为拾元、伍元、贰元的人民币27张,共108元,拾元的张数比伍元的张数少7张,那么,三种面值的人民币各有多少张?
    【解析】108+7×10-2×(27+7)= 110(元)
    110÷(10+5-2×2)= 10(张)……伍元
    10-7 = 3(张)……拾元
    27-10-3 = 14(张)……贰元
    9、有160个机器零件,平均分给甲、乙两个车间加工,乙车间比甲车间迟3小时开工,所以比甲车间晚30分钟完成。已知乙车间加工1个零件的时间相同,甲、乙两个车间加工1个零件各需要多少分钟?
    【解析】(60×3-20)÷(160÷2)÷(3-1) = 1(分钟)……乙
    1×3 = 3(分钟)……甲
    10、有红、白球若干,若每次拿出1个红球和1个白球,则拿到没有红球时,还剩下50个白球;若每次拿出1个红球和3个白球,则拿到没有白球时,还剩下50个红球;问这堆红球、白球共用多少个?
    【解析】50×2÷(3-1)= 50(次)
    50×(1+3)+50 = 250(个)
    11、老师和学生共100人去植树,老师每人栽3棵,学生每3人栽1棵,一共栽了100棵,问:老师、学生各多少人?
    【解析】3×〔(3×100-100)÷(3×3-1)〕= 75(人)……生
    100-75 = 25(人)……师
    课后反击
    1、甲买一箱苹果和一箱梨,共付55元;乙买了一箱梨和一箱橘子,共付50元;丙买了一箱苹果和一箱橘子,共付45元;求三种水果每箱的价钱。
    【解析】(55+50+45)÷2 = 75(元)
    75-55 = 20(元)……橘子
    75-50 = 25(元)……苹果
    75-45 = 30(元)……梨
    2、爸爸买一套西服、一条领带和一双皮鞋共用了1425元,已知西服的价钱比领带贵703元,西服和领带一共比鞋贵809元,求西服、领带、皮鞋的单价。
    【解析】(1425-809)÷2 = 308(元)……鞋
    (1425-308-703)÷2 = 207(元)……领带
    207+703 = 910(元)……西服
    3、甲、乙两个车间织同样多的布,原计划每天共织700米,现技术改进,甲车间每天多织布100米,乙车间的日产量提高一倍,这样,两车间一天共织了1020米。甲、乙两车间原计划每天各织布多少米?
    【解析】(1020-700-100)÷(2-1)= 220(米)……乙车间
    700-220 = 480(米)……甲车间
    4、一根铁丝,截去四分之三,剩下部分正好做一个边长为5厘米的正方形框架,这根铁丝原长多少?
    【解析】5×4×4 = 80(厘米)
    5、甲、乙两人加工某种零件,甲先做了3分钟,而后两人又一起做了2分钟,一共加工零件610个。已知甲每分钟比乙每分钟多加工10个,那么,甲比乙多加工多少个零件?
    【解析】(610+10×2)÷(3+2×2)= 90(个)
    90×3+10×2 = 290(个)
    6、720人外出参观,1辆大客车比1辆面包车多载20人,6辆大客车和8辆面包车载的人数相等,如果都乘面包车,需要几辆?如果都乘大客车呢?
    【解析】20×6÷(8-6)= 60(人)
    60+20 = 80(人)
    720÷60 = 12(辆)……面包车
    720÷80 = 9(辆)……大客车
    7、师、徒两人合做264个零件,徒弟先做4小时后又和师傅合做了8小时才完成了任务。已知徒弟每小时比师傅少做了3个,师傅每小时做多少个?
    【解析】(264+3×8+3×4)÷(8×2+4)= 15(个)
    8、一次竞赛,五年级和六年级共20人获奖,在获奖者中有16人不是五年级的,有12人不是六年级的,该校有多少人获奖?
    【解析】(12+16+20)÷2 = 24(人)
    9、甲乙丙三人都以均匀的速度进行60米赛跑,当甲冲过终点时,比乙领先10米,比丙领先20米,当乙到达终点时,比丙领先多少米?
    【解析】(60-10)÷(60-20)= 1.25
    20-10÷1.25 = 12(米)
    直击赛场

    1、(第二届“希望杯”)暑假期间,小强每天都坚持游泳,并对所游的距离作了记录。如果他在暑假的最后一天游670米,则平均每天游495米;如果最后一天游778米,则平均每天游498米;如果他想平均每天游500米,那么最后一天应游多少米?
    【解析】778-670=108,平均数增加498-495=3,平均数要增加5,最后一点要多游108÷3×5=180,180+670=850米。
    2、如下图,甲、乙、丙是三个站,乙站到甲、丙两站的距离相等。小明和小强分别从甲、丙两站同时出发相向而行,小明过乙站100米后与小强相遇,然后两人又继续前进,小明走到丙站立即返回,经过乙站后300米又追上小强。问甲、丙两站的距离是多少数?
    【解析】小明第一次遇到小强的时候,走了全程的一半加100米;他从过乙站100米的地方开始,第二次前进,追上小强时离乙站300米,300-100=200(米),说明他走完了全程加200米这就可以判断,他第二次走的距离是第一次的2倍
    所以小强第二次走的距离也是第一次走的距离的2倍。小强第二次走过的距离是300+100=400(米),从而第一次走过的距离是200米乙站和丙站的距离就是200+100=300(米),甲、丙两站的距离是300×2=600(米)
    名师点拨

    一般复合应用题往往是有两组或两组以上的数量关系交织在一起,有的已知条件是间接的,数量关系比较复杂,叙述的方式和顺序也比较多样。因此,一般应用题没有明显的结构特征和解题规律可循。解答一般应用题时,可以借助线段图、示意图、直观演示手段帮助分析。在分析应用题的数量关系时,我们可以从条件出发,逐步推出所求问题(综合法);也可以从问题出发,找出必须的两个条件(分析法)。在实际解时,可以根据题中的已知条件,灵活运用这两种方法。
    应用题解答的关键步骤,是分析数量关系和线段图比较。线段图比较直观,可以把 一道应用题的条件、问题以及它们之间的内在联系清晰地反映出来。画线段图既是一个审题过程,同时也是一个分析应用题的数量关系过程,线段图画正确了,应用题的数量关系也就清楚了。应用题的解题思路也随之而出,问题迎刃而解。
    学霸经验

    本节课我学到了
    我需要努力的地方是

    相关试卷

    五年级奥数——作图法解题(剖析版):

    这是一份五年级奥数——作图法解题(剖析版),共8页。试卷主要包含了专题引入,差量系顺推等内容,欢迎下载使用。

    五年级奥数——周期问题(剖析版):

    这是一份五年级奥数——周期问题(剖析版),共9页。试卷主要包含了周期问题,解题策略等内容,欢迎下载使用。

    五年级奥数——盈亏问题(剖析版):

    这是一份五年级奥数——盈亏问题(剖析版),共10页。试卷主要包含了基本方法,方法技巧等内容,欢迎下载使用。

    数学口算宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map