所属成套资源:适用于新高考新教材2024版高考数学二轮复习课件(85份)
- 适用于新高考新教材2024版高考数学二轮复习上篇六大核心专题主攻专题6函数与导数高考小题突破10导数的简单应用课件 课件 0 次下载
- 适用于新高考新教材2024版高考数学二轮复习上篇六大核心专题主攻专题6函数与导数解答题专项6导数的综合应用课件 课件 0 次下载
- 适用于新高考新教材2024版高考数学二轮复习上篇六大核心专题主攻专题6函数与导数培优拓展十二洛必达法则速求参数范围课件 课件 0 次下载
- 适用于新高考新教材2024版高考数学二轮复习上篇六大核心专题主攻专题6函数与导数培优拓展十三隐零点问题课件 课件 0 次下载
- 适用于新高考新教材2024版高考数学二轮复习上篇六大核心专题主攻专题6函数与导数培优拓展十四极值点偏移问题课件 课件 0 次下载
适用于新高考新教材2024版高考数学二轮复习上篇六大核心专题主攻专题6函数与导数课件
展开
这是一份适用于新高考新教材2024版高考数学二轮复习上篇六大核心专题主攻专题6函数与导数课件,共15页。PPT课件主要包含了领航备考路径,通览主干知识,根据a01推知,注意带“”,注意不带“”,这个条件不可少等内容,欢迎下载使用。
1.函数的概念(1)求函数定义域的方法是依据使含自变量x的代数式有意义列出相应的不等式(组)求解.
误区警示函数的定义域必须写成集合或区间的形式.
(2)求函数的值域要优先考虑定义域,常用方法:配方法、分离常数法、换元法、单调性法、基本不等式法、数形结合法.
2.函数的性质 (1)奇偶性:①定义:若函数的定义域关于原点对称,则有:f(x)是偶函数⇔f(-x)=f(x);f(x)是奇函数⇔f(-x)=-f(x).②判断方法:定义法、图象法、奇偶函数性质法(如奇函数×奇函数是偶函数).(2)单调性的判断方法:定义法、图象法、导数法.(3)周期性的常用结论:若f(x+a)=-f(x)或f(x+a)=± (a≠0),则T=2a;若f(x+a)=f(x-b),则T=a+b;若f(x)的图象有两条对称轴直线x=a和直线x=b(a≠b),则T=2|b-a|;若f(x)的图象有两个对称中心(a,0)和(b,0)(a≠b),则T=2|b-a|(可类比正弦、余弦函数).
这是函数具有奇偶性的重要前提
等式中自变量x的系数同号
误区警示若f(x)是奇函数且在原点有定义,则f(0)=0;若函数f(x)是周期为T的奇函数,则必有
3.函数的图象(1)函数图象的判断方法:①找特殊点;②看性质:根据函数性质判断图象的位置、对称性、变化趋势等;③看变换:看函数是由基本初等函数经过怎样的变换得到的.
等式中自变量x的系数异号
(4)利用图象可解决函数的最值、方程的解、不等式的解集以及求参数的取值范围等问题.
4.指数运算与对数运算的常用结论
(4)对数值符号规律:已知a>0,且a≠1,b>0,则lgab>0⇔(a-1)(b-1)>0; lgab1时,在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增;当0
相关课件
这是一份适用于新高考新教材2024版高考数学二轮复习上篇六大核心专题主攻专题6函数与导数培优拓展十一导数应用中的函数构造课件,共17页。
这是一份适用于新高考新教材2024版高考数学二轮复习上篇六大核心专题主攻专题6函数与导数培优拓展十四极值点偏移问题课件,共13页。PPT课件主要包含了极值点左偏,极值点右偏等内容,欢迎下载使用。
这是一份适用于新高考新教材2024版高考数学二轮复习上篇六大核心专题主攻专题6函数与导数培优拓展十三隐零点问题课件,共12页。