年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024届高考数学二轮专题复习与测试第一部分专题五解析几何微专题3圆锥曲线中的最值范围证明问题大题考法2范围问题

    2024届高考数学二轮专题复习与测试第一部分专题五解析几何微专题3圆锥曲线中的最值范围证明问题大题考法2范围问题第1页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024届高考数学二轮专题复习与测试第一部分专题五解析几何微专题3圆锥曲线中的最值范围证明问题大题考法2范围问题

    展开

    这是一份2024届高考数学二轮专题复习与测试第一部分专题五解析几何微专题3圆锥曲线中的最值范围证明问题大题考法2范围问题,共3页。
    (1)求双曲线C的方程;
    (2)M、N是C右支上的两动点,设直线AM、AN的斜率分别为k1、k2,若k1k2=-2,求点A到直线MN的距离d的取值范围.
    解:(1)根据题意可得∠BAD=90°,半焦距c=2,
    由AF=BF,可得a+c=eq \f(b2,a),
    所以a2+2a=22-a2,解得a=1,
    所以b2=c2-a2=4-1=3,
    所以双曲线C的方程为x2-eq \f(y2,3)=1.
    (2)显然直线MN不可能与坐标轴平行,
    所以设直线MN的方程为x=my+n,
    联立eq \b\lc\{(\a\vs4\al\c1(x=my+n,,3x2-y2=3,))可得(3m2-1)y2+6mny+3(n2-1)=0,
    设M(x1,y1),N(x2,y2),则根据题意可得:
    eq \b\lc\{(\a\vs4\al\c1(3m2-1≠0,,Δ>0,))且y1+y2=-eq \f(6mn,3m2-1),y1y2=eq \f(3(n2-1),3m2-1),①
    由k1k2=-2,可得y1y2+2(x1+1)(x2+1)=0,
    即y1y2+2(my1+n+1)(my2+n+1)=0,
    整理得(2m2+1)y1y2+2m(n+1)(y1+y2)+2(n+1)2=0,②
    将①代入②中可得3(n2-1)(2m2+1)-12m2n(n+1)+2(n+1)2(3m2-1)=0,
    化简可消去所得的含m的项,
    从而解得n=5或n=-1(舍去),所以直线MN的方程为x-my-5=0,所以d=eq \f(6,\r(m2+1)),
    又MN都在双曲线的右支上,
    所以3m2-10,y2

    相关试卷

    2024届高考数学二轮专题复习与测试第一部分专题五解析几何微专题4圆锥曲线中的定点定值存在性问题大题考法3存在性问题:

    这是一份2024届高考数学二轮专题复习与测试第一部分专题五解析几何微专题4圆锥曲线中的定点定值存在性问题大题考法3存在性问题,共3页。

    2024届高考数学二轮专题复习与测试第一部分专题五解析几何微专题4圆锥曲线中的定点定值存在性问题大题考法2定值问题:

    这是一份2024届高考数学二轮专题复习与测试第一部分专题五解析几何微专题4圆锥曲线中的定点定值存在性问题大题考法2定值问题,共3页。

    2024届高考数学二轮专题复习与测试第一部分专题五解析几何微专题3圆锥曲线中的最值范围证明问题大题考法3证明问题:

    这是一份2024届高考数学二轮专题复习与测试第一部分专题五解析几何微专题3圆锥曲线中的最值范围证明问题大题考法3证明问题,共3页。试卷主要包含了且y1y2y3y4=16,证明,几何证明问题的解题策略,证明三点共线问题的方法等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map