- 专题02 数轴之六大考点-【学霸满分】2023-2024学年七年级数学上册重难点专题提优训练(人教版) 试卷 0 次下载
- 专题03 相反数与绝对值之十大考点-【学霸满分】2023-2024学年七年级数学上册重难点专题提优训练(人教版) 试卷 0 次下载
- 专题04 有理数的加减法之八大考点-【学霸满分】2023-2024学年七年级数学上册重难点专题提优训练(人教版) 试卷 0 次下载
- 专题05 有理数的乘除法之七大考点-【学霸满分】2023-2024学年七年级数学上册重难点专题提优训练(人教版) 试卷 0 次下载
- 专题06 有理数的乘方及混合运算(含科学记数法)之六大考点-【学霸满分】2023-2024学年七年级数学上册重难点专题提优训练(人教版) 试卷 0 次下载
专题01 正数、负数、有理数之七大考点-【学霸满分】2023-2024学年七年级数学上册重难点专题提优训练(人教版)
展开目录
TOC \ "1-3" \h \u \l "_Tc1812" 【典型例题】 PAGEREF _Tc1812 \h 1
\l "_Tc14914" 【考点一 正负数的意义】 PAGEREF _Tc14914 \h 1
\l "_Tc18360" 【考点二 相反意义的量】 PAGEREF _Tc18360 \h 2
\l "_Tc15554" 【考点三 正负数的实际应用】 PAGEREF _Tc15554 \h 3
\l "_Tc3606" 【考点四 有理数的概念】 PAGEREF _Tc3606 \h 4
\l "_Tc11959" 【考点五 0的意义】 PAGEREF _Tc11959 \h 5
\l "_Tc23849" 【考点六 有理数的分类】 PAGEREF _Tc23849 \h 6
\l "_Tc30271" 【考点七 带“非”字的有理数】 PAGEREF _Tc30271 \h 8
\l "_Tc32104" 【过关检测】 PAGEREF _Tc32104 \h 11
【典型例题】
【考点一 正负数的意义】
例题:(2023·广西·统考中考真题)若零下2摄氏度记为,则零上2摄氏度记为( )
A.B.C.D.
【答案】C
【分析】根据正负数的实际意义可进行求解.
【详解】解:由题意可知零上2摄氏度记为;
故选C.
【点睛】本题主要考查正负数的意义,熟练掌握正负数的意义是解题的关键.
【变式训练】
1.(2023·广西南宁·统考二模)在,0,0.5,3四个数中,是负数的是( )
A.B.0C.0.5D.3
【答案】A
【分析】根据负数的定义即可求解.
【详解】解:由题意得,在,0,0.5,3四个数中,是负数的是,
故选A.
【点睛】此题主要正负数的定义,解题的关键是熟知负数的定义.
2.(2023秋·广东肇庆·七年级统考期末)中国是世界上最早认识和应用负数的国家,比西方早一千多年,在我国古代著名的数学专著《九章算术》中,首次引入负数,如果收入100元记作元,则元表示( )
A.支出45元B.收入45元C.支出55元D.收入55元
【答案】C
【分析】根据具有相反意义的量分析即可求解.
【详解】解:收入100元记作元,则元表示支出55元,
故选:C.
【点睛】本题考查了具有相反意义的量,理解负数表示相反意义的量是解题的关键.
【考点二 相反意义的量】
例题:(2023·福建·统考中考真题)某仓库记账员为方便记账,将进货10件记作,那么出货5件应记作___________.
【答案】
【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
【详解】解:∵“正”和“负”相对,
∴进货10件记作,那么出货5件应记作.
故答案为:.
【点睛】本题主要考查了正数和负数,理解“正”和“负”的相对性,确定一对具有相反意义的量是解题关键.
【变式训练】
1.(2023春·上海宝山·六年级校考期中)若将“收入100元”记为“”元,则“支出400元”可记为“_______”元.
【答案】
【分析】根据“正”和“负”是表示互为相反意义的量解答即可.
【详解】解:∵“收入100元”记为“”元,
则“支出400元”可记为“”元,
故答案为:.
【点睛】本题考查了正数和负数的定义.解本题的根据是掌握正数和负数是互为相反意义的量.
2.(2023春·上海松江·六年级统考期中)如果体重减少2千克记作“千克”,那么“增重2千克”表示___________千克
【答案】
【分析】根据正负数的意义进行解答即可.
【详解】解:如果体重减少2千克记作“千克”,那么“增重2千克”表示千克.
故答案为:.
【点睛】本题主要考查了相反意义的量,解题的关键是理解题意,掌握具有相反意义的量.
【考点三 正负数的实际应用】
例题:(2023·甘肃武威·统考中考真题)近年来,我国科技工作者践行“科技强国”使命,不断取得世界级的科技成果,如由我国研制的中国首台作业型全海深自主遥控潜水器“海斗一号”,最大下潜深度10907米,填补了中国水下万米作业型无人潜水器的空白;由我国自主研发的极目一号Ⅲ型浮空艇“大白鲸”,升空高度至海拔9050米,创造了浮空艇原位大气科学观测海拔最高的世界记录.如果把海平面以上9050米记作“米”,那么海平面以下10907米记作“________米”.
【答案】
【分析】根据正负数表示相反的意义解答即可.
【详解】解:把海平面以上9050米记作“米”,则海平面以下10907米记作米,
故答案为:.
【点睛】此题考查了正负数的理解:在一个事件中,规定一个量为正,则表示相反意义的量为负,正确理解正负数表示一对相反的意义的量是解题的关键.
【变式训练】
1.(2023·浙江·七年级假期作业)一袋食品的包装袋上标有的字样,它的含义是______.
【答案】这袋食品的质量与标准质量相比,超重不超过,不足也不超过
【分析】利用生活中的数学知识,利用表示比标准质量可能多也可能少解决本题即可.
【详解】解:表示比超重不超过,不足也不超过.
故答案为:这袋食品的质量与标准质量相比,超重不超过,不足也不超过.
【点睛】本题考查了有理数中正负数的实际应用,把正数和负数与日常生活相联系是解答本题的关键.
2.(2023秋·安徽亳州·七年级统考期末)某商店出售的一种袋装大米,在包装上标有:,这袋大米最轻的重量是___________kg.
【答案】
【分析】根据正负数的意义计算即可.
【详解】∵包装上标有:,
∴这袋大米最轻的重量是.
故答案为: .
【点睛】本题考查了正负数的意义,正确理解是解题的关键.
【考点四 有理数的概念】
例题:(2023春·黑龙江哈尔滨·七年级哈尔滨市虹桥初级中学校校考阶段练习)在,,,0,中,有理数有( )个.
A.2B.3C.4D.5
【答案】C
【分析】根据有理数的定义,即可求解,分数与整数统称为有理数.
【详解】解:在,,,0,中,有理数有,,,0,共4个
故选:C.
【点睛】本题考查了有理数的定义,理解有理数的定义是解题的关键.
【变式训练】
1.(2023春·上海·六年级专题练习)在数π,0,,,,25中,有理数有( )个.
A.2B.3C.4D.5
【答案】D
【分析】根据有理数的概念进行解答.
【详解】解:π不是有理数;
0,25,是整数,属于有理数;
是分数,属于有理数;
,,是有限小数,属于有理数;
故有理数有0,,,,25,共5个.
故选:D.
【点睛】本题考查的是认识有理数问题,关键是能判断一个数是否是有理数.
2.(2023·全国·七年级假期作业)下列各数中,负有理数有( )个
,,,0,,120,,
A.1B.2C.3D.4
【答案】C
【分析】根据负有理数的分为负整数和负分数,逐一进行判断即可得到答案.
【详解】解:负有理数有、、,共3个,
故选C.
【点睛】本题考查了有理数分类,解题关键是掌握负有理数包括负整数和负分数.
【考点五 0的意义】
例题:(2023·浙江·七年级假期作业)下面关于0的说法,正确的是( )
A.0既不是正数也不是负数B.0既不是整数也不是分数
C.0不是有理数D.0的倒数是0
【答案】A
【分析】依据倒数,有理数相关概念以及有理数分类判断即可.
【详解】A.0既不是正数,也不是负数,故此选项正确,符合题意;
B.0是整数,不是分数,故此选项错误,不符合题意;
C.0是有理数,故此选项错误,不符合题意;
D.0不存在倒数,故此选项错误,不符合题意.
故选A.
【点睛】本题考查了有理数,0是重要的数字,掌握有理数的相关概念和分类是解题的关键.
【变式训练】
1.(2023秋·全国·七年级专题练习)下列结论中正确的是( )
A.0既是正数,又是负数B.0是最小的正数
C.0是最大的负数D.0既不是正数,也不是负数
【答案】D
【分析】根据这个实数的相关知识,进行判断即可.
【详解】解:0既不是正数,也不是负数;
是整数,也是有理数;
是最小的自然数;
还是正数和负数的分界线;
故选:D.
【点睛】本题考查了有理数的相关知识,熟知:①既不是正数,也不是负数;②是整数,也是有理数;③是最小的自然数;④是正数和负数的分界;是解本题的关键.
2.(2023秋·云南昭通·七年级校考阶段练习)下列说法正确的是( )
A.整数就是自然数B.0不是自然数
C.正数和负数统称有理数D.0是整数而不是负数
【答案】D
【分析】根据有理数的分类即可作出判断.
【详解】A、整数为正整数,0及负整数,自然数为正整数与0,说法错误,不符合题意,此选项错误;
B、0是自然数,说法错误,不符合题意,此选项错误;
C、正数,0和负数统称为有理数,说法错误,不符合题意,此选项错误;
D、0是整数而不是负数,说法正确,符合题意,此选项正确.
故选:D.
【点睛】本题考查了有理数,掌握有理数与自然数和整数的区别,以及0的意义是本题关键.
【考点六 有理数的分类】
例题:(2023·江苏·七年级假期作业)请把下列各数填入相应的集合中:
,,,,,,,.
正数集合:{ …};
分数集合:{ …};
整数集合:{ …};
有理数集合:{ …}.
【答案】,5.2,,;,5.2,,;0,,;,5.2,0,,,,.
【分析】根据有理数的分类,可得答案.
【详解】解:,,,,,,,.
正数集合:,5.2,,,;
分数集合:,5.2,,,;
整数集合:,,,;
有理数集合:,5.2,0,,,,,.
故答案为:,5.2,,;,5.2,,;0,,;,5.2,0,,,,.
【点睛】本题考查了有理数的分类,熟练掌握各自的定义是解本题的关键.
【变式训练】
1.(2023·江苏·七年级假期作业)把下列将数填入相应的集合中:,,,28,0,4,,.
【答案】见解析
【分析】根据有理数的分类解答即可.
【详解】解:如图所示:
【点睛】本题考查了有理数,掌握有理数的分类是解答本题的关键.
2.(2023·全国·七年级假期作业)把下列各数分别填入相应的集合内:2,,,,,,
(1)正数集合:{ …};
(2)负数集合:{ …};
(3)整数集合:{ …};
(4)分数集合:{ …};
【答案】(1)2,,
(2),,
(3)2,
(4),
【分析】根据有理数的分类方法求解即可.
【详解】(1)解:正数有:2,,,
故答案为:2,,;
(2)解:负数有:,,;
故答案为:,,;
(3)解:整数有:2,;
故答案为:2,;
(4)解:分数有:,;
故答案为:,.
【点睛】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.
【考点七 带“非”字的有理数】
例题:(2023·江苏·七年级假期作业)把下列各数,,,,,填在相应集合里.
非正数集合: ;
分数集合: ;
整数集合: .
【答案】,,,;,,;,,.
【分析】根据有理数的分类逐个分析判断即可求解.
【详解】非正数集合:,,,;
分数集合:,,;
整数集合:,,.
故答案为:,,,;,,;,,.
【点睛】本题考查了有理数的分类,熟练掌握有理数的分类是解题的关键.
【变式训练】
1.(2023·浙江·七年级假期作业)把下列各数填入相应集合的括号内.
,,,0,,13,,,,,
(1)正分数集合:{____________…};
(2)整数集合:{____________…};
(3)非负数集合:{____________…).
【答案】(1),,;
(2)0,13,,;
(3),,0,13,,.
【分析】(1)根据正分数的定义:比0大的分数叫正分数,正数前面常有一个符号“”,通常可以省略不写,据此逐一进行判断即可得到答案;
(2)根据整数的定义:整数是正整数、零、负整数的集合,据此逐一进行判断即可得到答案;
(3)根据非负数的定义:正数和零总称为非负数,据此逐一进行判断即可得到答案
【详解】(1)解:根据正分数的定义,正分数有:,,,
故答案为:,,;
(2)解:根据整数的定义,整数有:0,13,,,
故答案为:0,13,,;
(3)解:根据非负数的定义,非负数有:,,0,13,,,
故答案为:,,0,13,,.
【点睛】本题考查了有理数的分类,解题关键是理解正分数,整数,非负数的定义,并正确区别.
2.(2023·江苏·七年级假期作业)请把下列各数填在相应的集合内:,,,,,,.
正数集合{ ……};
负整数集合{ ……};
整数集合{ ……};
分数集合{ ……};
非正数集合{ ……};
非负整数集合{ ……}.
【答案】,,;,;,,,;,,;,,,;,.
【分析】根据有理数的分类逐个分析判断即可求解.
【详解】正数集合,,,;
负整数集合,,;
整数集合,,,,;
分数集合,,,;
非正数集合,,,,;
非负整数集合,,.
故答案为:,,;,;,,,;,,;,,,;,.
【点睛】本题考查了有理数的分类,熟练掌握有理数的分类是解题的关键.
【过关检测】
一、选择题
1.(2023春·广东河源·七年级校考开学考试)下列说法错误的是( )
A.任何有理数都有相反数 B.正数和负数统称有理数
C.任何一个有理数都可以用数轴上的一个点表示 D.不是有理数
【答案】B
【分析】根据有理数的概念,无理数的概念计算即可.
【详解】A. 任何有理数都有相反数,不符合题意;
B. 正数,零和负数统称有理数,符合题意;
C. 任何一个有理数都可以用数轴上的一个点表示,不符合题意;
D. 不是有理数,不符合题意;
故选B.
【点睛】本题考查了有理数即整数和分数的统称,无理数即无限不循环小数,正确理解定义是解题的关键.
2.(2023·全国·七年级假期作业)对于下列各数:,其中负数有( )
A.1个B.2个C.3个D.4个
【答案】D
【分析】根据负数的定义进行判断即可.
【详解】解:负数有:,共4个,
故选:D.
【点睛】本题考查负数的定义,解题的关键是掌握小于0的数是负数,其中0既不是正数也不是负数.
3.(2023春·安徽安庆·七年级统考期末)在,,4,,0,中,表示有理数的有( )
A.3个B.4个C.5个D.6个
【答案】C
【分析】先根据有理数的概念判断出有理数,再计算个数.
【详解】解:在,,4,,0,中,
表示有理数的有:,4,,0,,共有5个,
故选:C.
【点睛】此题考查了有理数的概念,要掌握:整数和分数统称有理数,其中不是有理数.
4.(2023·广东·统考中考真题)负数的概念最早出现在我国古代著名的数学专著《九章算术》中,如果把收入5元记作元,那么支出5元记作( )
A.元B.0元C.元D.元
【答案】A
【分析】根据相反数的意义可进行求解.
【详解】解:由把收入5元记作元,可知支出5元记作元;
故选A.
【点睛】本题主要考查相反数的意义,熟练掌握相反数的意义是解题的关键.
5.(2023·广西崇左·统考二模)《九章算术》中注有“今两算得失相反,要令正负以名之.”意思是:今有两数若其意义相反,则分别叫做正数与负数.若向东走米记作米,则米表示( )
A.向东走米B.向东走米C.向西走米D.向西走米
【答案】D
【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.
【详解】解:若向东走米记作米,则米表示向西走米,
故选D.
【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
二、填空题
6.(2023秋·江苏淮安·七年级统考期末)下列各数中:,,0,,,,有理数有____________个.
【答案】5
【分析】根据有理数的概念进行判断即可.
【详解】解:有理数包括整数和分数,
∴是有理数的有,共5个
故答案为:5
【点睛】本题主要考查有理数的概念,熟练掌握有理数的概念是解决本题的关键.
7.(2023·浙江·七年级假期作业)在0,1,,,这五个数中,是非负整数的有_____.
【答案】,
【分析】找出不是负数的整数即可求解.
【详解】在0,1,,,这五个数中,0,1是非负整数,
故答案为:,
【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.
8.(2023秋·江西宜春·七年级统考期末)《九章算术》中注有“今两算得失相反,要令正负以名之”.大意是:今有两数若其意义相反,则分别叫做正数与负数.若气温上升2℃记作℃,则下降5℃记作_____℃.
【答案】
【分析】根据“正”和“负”所表示的意义解答.
【详解】∵气温上升2℃记作℃,
∴下降5℃记作℃,
故答案为.
【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量,在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
9.(2023秋·山东滨州·七年级统考期末)体育课上,全班男同学进行了100米测验,合格成绩为15秒,下表是某小组10名男生的成绩记录,其中“”表示成绩大于15秒.这个小组男生的合格率为___________.
【答案】
【分析】由表格可得出,,,,,都是合格,进而得出这个小组男生的合格率.
【详解】∵由表格可得出,,,,,都是合格,
∴这个小组男生的合格率为:,
故答案为:.
【点睛】本题考查了正负数的意义,找出合格人数是解题的关键.
10.(2023秋·全国·七年级专题练习)(1)在同一个问题中,用“+”和______表示具有相反意义的量;
(2)若没有规定哪个量为正或负,习惯把“前进、上升、收入、零上温度”等记为______,把“后退、下降、支出、零下温度”等记为_______;相反意义的量一是意义_______,二是要有数量.
【答案】 − 正 负 相反
【分析】(1)根据正数和负数表示具有相反意义的量即可解答;
(2)根据正数和负数表示具有相反意义的量即可解答.
【详解】解:(1)在同一个问题中,用正数和负数表示具有相反意义的量,
∴在同一个问题中,用“+”和“−”表示具有相反意义的量,
故答案为:−;
(2)若没有规定哪个量为正或负,习惯把“前进、上升、收入、零上温度”等记为正,把“后退、下降、支出、零下温度”等记为负;相反意义的量一是意义相反,二是要有数量,
故答案为:正,负,相反.
【点睛】本题主要考查了正数和负数,理解正数和负数是表示具有相反意义的量是解题的关键.
三、解答题
11.(2023·全国·七年级假期作业)某班级抽查了名同学的期末成绩,以分为基准,超出的分数记为正数,不足的分数记为负数,记录的结果如下(单位:分):、﹣、、﹣、﹣、﹣、﹣、、、.这名同学中,
(1)最高分是多少?
(2)最低分是多少?
【答案】(1)分
(2)分
【分析】(1)根据正负数的意义,可得答案;
(2)根据正负数的意义,可得答案;
【详解】(1)最高分是分;
(2)最低分是分;
【点睛】本题考查了正数和负数,利用正负数的意义超出的分数记为正数,不足的分数记为负数是解题关键.
12.(2023春·六年级单元测试)把下列各数填在相应的大括号里:
正整数集合:{ …}.
整数集合:{ …}.
负分数集合:{ …}.
【答案】见解析
【分析】根据有理数的分类解答即可.
【详解】解:正整数集合:{12…}.
整数集合:{…}.
负分数集合:{ …}.
故答案为:12;;.
【点睛】此题考查了有理数的分类,熟练掌握有理数的分类是解题的关键.
13.(2023·江苏·七年级假期作业)把下列各数填入它所属的集合内:
,,0,,2,,(每两个2之间依次增加一个1).
正数集合:{ …};
无理数集合:{ …};
分数集合:{ …};
非负整数集合:{ …}.
【答案】见解析
【分析】根据有理数的分类求解即可.
【详解】解:正数集合:{,2,…};
无理数集合:{,(每两个2之间依次增加一个1)…};
分数集合:{,…};
非负整数集合:{ 0,2…}.
【点睛】此题考查了有理数的分类,解题的关键是熟练掌握有理数的分类.
14.(2023·江苏·七年级假期作业)把下列各数分别填入相应的集合:.
正有理数集{_______________};
非负数集{_______________};
非负整数集{_______________};
分数集{_______________}.
【答案】,,;,0,π,,;,0;,,,
【分析】根据有理数的分类进行判断即可.
【详解】解:正有理数集{,,};
非负数集{,0,π,,};
非负整数集{,0};
分数集{,,,}.
故答案为:,,;,0,π,,;,0;,,,.
【点睛】本题考查了有理数的分类,掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点,解题的关键是注意整数和正数的区别,注意0是整数,但不是正数.
15.(2023秋·河南周口·七年级统考期末)把下列各数填入它所属的集合内:.
(1)分数集合{_______…};
(2)自然数集合{______…};
(3)非正整数集合{_______…};
(4)非负有理数集合{______…}.
【答案】(1)
(2)
(3),0
(4)15,,0,,80%,5
【分析】(1)根据有理数的分类进行作答即可;
(2)根据有理数的分类进行作答即可;
(3)根据有理数的分类进行作答即可;
(4)根据有理数的分类进行作答即可.
【详解】(1)解:分数集合:;
故答案为:;
(2)自然数集合:;
故答案为:;
(3)非正整数集合:;
故答案为:,0;
(4)非负有理数集合:
故答案为:15,,0,,80%,5.
【点睛】本题考查有理数的分类.熟练掌握有理数的分类方法,是解题的关键.
16.(2023·浙江·七年级假期作业)将下列各数填入相应的大括号内:
,0.1,,,0,,,.
(1)非正数:{ …};
(2)非负数:{ …}
(3)非正整数:{ …};
(4)非负整数:{ …}
【答案】(1),,0,,
(2)0.1,,0,
(3),0
(4),0
【分析】(1)根据“负数和0统称为非正数”即可进行解答;
(2)根据“正数和0统称为非负数”即可进行解答;
(3)根据“0和负整数统称为非正整数”即可进行解答;
(4)根据“0和正整数统称为非负整数”即可进行解答.
【详解】(1)解:非正数:{,,0,,,…};
故答案为:,,0,,;
(2)解:非负数:{0.1,,0,,…};
故答案为:0.1,,0,;
(3)解:非正整数:{,0,…};
故答案为:,0;
(4)解:非负整数:{,0,…}.
故答案为:,0.
【点睛】本题主要考查了有理数的分类,熟练掌握有理数的各个分类依据是解题的关键.
17.(2023·全国·七年级假期作业)将下列各数填入所属的集合中:
0,,,,,3.5,0.6,,10,,,6.5
正数集合:{ …};
整数集合:{ …};
分数集合:{ …};
负整数集合:{ …};
正分数集合:{ …};
【答案】见解析
【分析】根据正数、整数、分数的概念,即可得出答案.
【详解】正数集合:;
整数集合:;
分数集合:;
负整数集合:;
正分数集合:;
【点睛】本题考查了正数、整数、分数的概念,掌握以上内容是解题的关键.
18.(2023·江苏·七年级假期作业)将下列各数填在相应的横线上.
,,,,,,,,.
(1)整数:________________________________________;
(2)负数:________________________________________;
(3)正分数:______________________________________;
(4)正有理数:____________________________________;
(5)非正整数:____________________________________;
(6)非负数:______________________________________.
【答案】(1)
(2)
(3)
(4)
(5)
(6)
【分析】根据有理数的分类即可解答.
【详解】(1)解:整数:
(2)解:负数:
(3)解:正分数:
(4)解:正有理数:
(5)解:非正整数:
(6)解:非负数:
【点睛】本题考查的是有理数的分类,熟练掌握有理数的分类是解题的关键.
初中1.2.1 有理数课时训练: 这是一份初中<a href="/sx/tb_c88278_t7/?tag_id=28" target="_blank">1.2.1 有理数课时训练</a>,文件包含专题05有理数的乘除法之七大考点原卷版docx、专题05有理数的乘除法之七大考点解析版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
初中数学人教版七年级上册1.2.1 有理数课后练习题: 这是一份初中数学人教版七年级上册<a href="/sx/tb_c88278_t7/?tag_id=28" target="_blank">1.2.1 有理数课后练习题</a>,文件包含专题01正数负数有理数之七大考点原卷版docx、专题01正数负数有理数之七大考点解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
2023-2024学年九年级数学下册重难点专题提优训练专题17弧长与扇形的面积之七大考点-【学霸满分】: 这是一份2023-2024学年九年级数学下册重难点专题提优训练专题17弧长与扇形的面积之七大考点-【学霸满分】,文件包含专题17弧长与扇形的面积之七大考点原卷版docx、专题17弧长与扇形的面积之七大考点解析版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。