终身会员
搜索
    上传资料 赚现金
    立即下载
    加入资料篮
    10.1.2 事件的关系和运算 教学设计01
    10.1.2 事件的关系和运算 教学设计02
    10.1.2 事件的关系和运算 教学设计03
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教A版 (2019)必修 第二册10.1 随机事件与概率教案

    展开
    这是一份人教A版 (2019)必修 第二册10.1 随机事件与概率教案,共6页。教案主要包含了引入新课,课堂探究,知识应用,课堂练习,归纳总结等内容,欢迎下载使用。

    教学内容
    事件之间的关系和运算法则.
    (二)教学目标
    (1)从实例出发,类比集合的关系和运算,引导学生从多个角度认识事件之间的关系和运算;提升学生的数学逻辑推理素养
    (2)掌握事件的交(并)运算公式.
    (3)能够判断随机事件是否为互斥事件
    (三)教学重点与难点
    教学重点:随机事件的交(并)运算.
    教学难点:互斥事件的判断.
    (四)教学过程设计
    一、引入新课
    从前面的学习中可以看到,我们在一个随机试验中可以定义很多随机事件.这些事件有的简单,有的复杂.我们希望从简单事件的概率推算出复杂事件的概率,所以需要研究事件之间的关系和运算.
    在掷骰子试验中,观察骰子朝上面的点数,可以定义许多随机事件,例如:
    Ci= “点数为i”,i=1,2,3,4,5,6;
    D1= “点数不大于3”;D2= “点数大于3”;
    E1= “点数为1或2”;E2= “点数为2或3”;
    F= “点数为偶数”;G= “点数为奇数”;
    ……
    (1)你还能写出这个试验中其他一些事件吗?请用集合的形式表示这些事件.
    (2)借助集合与集合的关系和运算,你能发现这些事件之间的联系吗?
    答:C1={1},C2={2},C3={3},C4={4},C5={5},C6={6};
    D1={1,2,3},D2={4,5,6};E1={1,2},E2={2,3}; F={2,4,6},G={1,3,5};
    使我们利用集合的知识研究随机事件,为研究概率的性质和计算等提供有效而简便的方法.下面我们按照这一思路展开研究
    二、课堂探究
    问题1用集合的形式表示事件C1= “点数为1”和事件G= “点数为奇数”,你能发现这两个事件之间的关系吗?
    答:它们分别是C1={1}和G={1,3,5}.
    事件关系:如果事件C1发生,那么事件G一定发生.
    集合表示:{1}⊆{1,3,5},即C1⊆ G.这时我们说事件G包含事件C1
    概念:一般地,若事件A发生,则事件B一定发生,我们就称事件B包含事件A (或事件A包含于事件B),记作B⊇A(或A⊆B).
    特别地,如果事件B包含事件A,事件A也包含事件B,即B⊇A且A⊇B,则称事件A与事件B相等,记作A=B.
    设计意图∶通过具体模型,从特例到一般,类比集合的相等关系给出集合相等的概念.
    问题2:用集合的形式表示事件D1= “点数不大于3”、事件E1= “点数为1或2”和事件E2= “点数为2或3”,它们之间有什么关系?
    思考1:如果事件E1和事件E2至少有一个发生,那么意味着代表随机事件的样本点有怎样的特点?事件 D1会发生吗?
    思考2:如果事件D1发生,则事件E1或者事件E2能够发生吗?
    思考3:利用样本点表示出各事件,通过集合来研究它们的关系又是怎样的呢?
    答:如果事件E1和事件E2至少有一个发生,相当于事件 D1发生;
    如果事件D1发生,事件E1或者事件E2不一定发生.
    事件之间的这种关系用集合的形式表示,就是{1,2}∪{2,3}={1,2,3},即E1∪E2=D1,这时我们称事件D1为事件E1和事件E2的并事件
    定义:一般地,事件A与事件B至少有一个发生,这样的一个事件中的样本点或者在事件A中,或者在事件B中,我们称这个事件为事件A与事件B的并事件 (或和事件),记作A∪B (或A+B).
    设计意图:利用集合的关系来体会随机事件之间的关系,通过思考环节不断的引导学生理解、归纳出定义
    问题3:事件C2= “点数为2”,事件E1= “点数为1或2”和事件E2= “点数为2或3”,则事件C2与事件E1,事件E2有怎样的关系?
    思考1:如果事件E1和事件E2同时发生,则意味着掷出的点数是多少?
    思考2:如果事件C2发生,则事件E1和事件E2会发生吗?
    思考3:利用样本点表示出各事件,通过集合来研究它们的关系又是怎样的呢?
    答:事件E1= “点数为1或2”和事件E2= “点数为2或3”同时发生,相
    当于事件C2发生;如果事件C2发生,则事件E1和事件E2一定都会发生;
    事件之间的这种关系用集合的形式表示,就是{1,2}∩{2,3}={2},
    即E1∩E2=C2,我们称事件C2为事件E1和E2的交事件.
    定义:一般地,事件A与事件B同时发生,这样的一个事件中的样本点既在事件A中,也在事件B中,我们称这样的一个事件为事件A与事件B的交事件 (或积事件),记作A∩B (或AB).
    设计意图:利用集合的关系来体会随机事件之间的关系,通过思考环节不断的引导学生理解、归纳出定义
    问题4:事件C3= “点数为3”和事件C4= “点数为4”,它们可能同时发生吗?用集合来研究它们的关系又是怎样的呢?
    答:事件C3与事件C4不可能同时发生,用集合的形式表示这种关系,就是 {3}∩{4}=∅,即C3∩C4=∅,这时我们称事件C3与事件C4互斥
    定义:一般地,如果事件A与事件B不能同时发生,也就是说A∩B是一个不可能事件,即A∩B=∅,则称事件A与事件B互斥 (或互不相容).
    问题5:用集合的形式表示事件F= “点数为偶数”、事件G= “点数为奇数”,它们与事件样本空间有怎样的关系?用集合来研究它们的并事件、交事件能发现怎样的关系呢?
    答:在任何一次试验中,事件F与事件G两者只能发生其中之一,而且也必然发生其中
    之一.
    集合表示为{2,4,6}∪{1,3,5}={1,2, 3,4,5,6},即F∪G=Ω,且{2,4,6}∩{1,3,5}=∅,即F∩G=∅.此时我们称事件F与事件G互为对立事件.
    定义:一般地,如果事件A和事件B在任何一次试验中有且仅有一个发生,即A∪B=Ω,且A∩B=∅,那么称事件A与事件B互为对立.事件A的对立事件记为A.
    对立事件一定是互斥事件,互斥事件不一定是对立事件
    三、知识应用
    例1 如图,由甲、乙两个元件组成一个并联电路, 每个元件可能正常或失效.设事件A= “甲元件正常”,B= “乙元件正常”.
    (1)写出表示两个元件工作状态的样本空间
    (2)用集合的形式表示事件A,B以及它们的对立事件;
    (3)用集合的形式表示事件A∪B和事件A∩B,并说明它们的含义及关系.
    分析:注意到试验由甲、乙两个元件的状态组成,所以可以用数组 (x1,x2)表示样本点.这样,确定事件A,B所包含的样本点时,不仅要考虑甲元件的状态,还要考虑乙元件的状态.
    解:(1)用x1,x2分别表示甲、乙两个元件的状态,则可以用(x1,x2)表示这个并联电路的状态.以1表示元件正常,0表示元件失效,则样本空间为Ω={(0,0),(0,1),(1,0),(1,1)}.
    (2)根据题意,可得
    A={(1,0),(1,1)},B={(0,1),(1,1)},
    A={(0,0),(0,1)},B={(0,0),(1,0)}.
    (3)A∪B={(0,1),(1,0),(1,1)},A∩B={(0,0)};A∪B表示电路工作正常,A∩B表示电路工作不正常;A∪B和A∩B互为对立事件.
    例2 一个袋子中有大小和质地相同的4个球,其中有2个红色球(标号为1和2),2个绿色球(标号为3和4),从袋中不放回地依次随机摸出2个球.设事件R1=“第一次摸到红球”,R2=“第二次摸到红球”,R=“两次都摸到红球”,G=“两次都摸到绿球”,M=“两个球颜色相同”,N=“两个球颜色不同”.
    (1)用集合的形式分别写出试验的样本空间以及上述各事件;
    (2)事件R与R1,R与G,M与N之间各有什么关系?
    (3)事件R与事件G的并事件与事件M有什么关系?事件R1与事件R2的交事件与事件R有什么关系?
    解:(1)所有的试验结果如图所示.用数组(x1,x2)表示可能的结果,x1是第一次摸到的球的标号,x2是第二次摸到的球的标号,则试验的样本空间
    Ω={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),
    (3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}.
    事件R1=“第一次摸到红球”,即x1=1或2,于是
    R1={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4)};
    事件R2=“第二次摸到红球”,即x2=1或2,于是
    R2={(2,1),(3,1),(4,1),(1,2),(3,2),(4,2)}.
    同理,有
    R={(1,2),(2,1)},
    G={(3,4),(4,3)},
    M={(1,2),(2,1),(3,4),(4,3)},
    N={(1,3),(1,4),(2,3),(2,4),(3,1),(3,2),(4,1),(4,2)}.
    (2)因为R⊆R1,所以事件R1包含事件R;
    因为R∩G=∅,所以事件R与事件G互斥;
    因为M∪N=Ω,M∩N=∅,所以事件M与事件N互为对立事件.
    (3)因为R∪G=M,所以事件M是事件R与事件G的并事件;
    因为R1∩R2=R,所以事件R是事件R1与事件R2的交事件.
    四、课堂练习
    1.从1,2,3,…,9中有放回地任取两数其中:①恰有一个3的倍数和恰有一个5的倍数;②至少有一个3的倍数和两个都是5的倍数;③两个都是3的倍数和两个都是5的倍数;④两个都是3的倍数和两个都是6的倍数.则互斥事件的组数是( ) .
    A. 0 B. 1 C. 2 D. 3
    2.试验E:抛掷一枚质地均匀的骰子,观察骰子掷出的点数,设事件A表示“向上的点数是1或2”,事件B表示“向上的点数是2或3”,则( ).
    A.A⊆B B.A=B
    C.A+B表示向上的点数是1或2或3 D.AB表示向上的点数是1或2或3
    3.试验E:甲、乙、丙三人各投篮一次,观察投中的情况.设事件A表示“甲投中”,B表示“乙投中” ,C表示“丙投中” ,试用A,B,C的运算表示下列随机事件:
    (1)甲、乙投中但丙没投中; (2)甲、乙、丙都投中;
    (3)甲、乙、丙三人至少有一人投中; (4)只有乙投中.
    参考答案:
    1.若两数为3,5,则①中的两个事件同时发生,所以它们不互斥;若两个都是5的倍数,则两数为5,它们都不是3的倍数,所以②是互斥事件;若两个都是3的倍数,则两数为3,6,9中任意两个,它们都不是5的倍数,所以③也是互斥事件;当两个数都为6时,④中的两事件可以同时发生,不是互斥事件.
    故选C.
    2.事件A={1,2},B={2,3},则A∩B={2},A∪B={1,2,3},故A+B,即A∪B表示向上的点数为1或2或3,AB即A∩B表示向上的点数为2.
    故选C.
    3.解:(1)丙没投中用C表示,即事件A,B,C同时发生,所以甲、乙投中但丙没投中,用 ABC表示;
    (2)甲、乙、丙都投中,即事件A,B,C同时发生,所以用ABC表示;
    (3)甲、乙、丙三人至少有一人投中,用 A∪B∪C表示;
    (4)只有乙投中,即甲、丙没投中,乙投中,故事件A,B,C同时发生,所以只有乙投中,用ABC表示.
    五、归纳总结
    事件的关系:一般地,若事件A发生,则事件B一定发生,我们就称事件B包含事件A (或事件A包含于事件B),记作B⊇A(或A⊆B).
    特别地,如果事件B包含事件A,事件A也包含事件B,即B⊇A且A⊇B,则称事件A与事件B相等,记作A=B.
    事件的运算:
    一般地,事件A与事件B至少有一个发生,这样的一个事件中的样本点或者在事件A中,或者在事件B中,我们称这个事件为事件A与事件B的并事件 (或和事件),记作A∪B (或A+B).
    一般地,事件A与事件B同时发生,这样的一个事件中的样本点既在事件A中,也在事件B中,我们称这样的一个事件为事件A与事件B的交事件 (或积事件),记作A∩B (或AB)
    一般地,如果事件A与事件B不能同时发生,也就是说A∩B是一个不可能事件,即A∩B=∅,则称事件A与事件B互斥 (或互不相容).
    一般地,如果事件A和事件B在任何一次试验中有且仅有一个发生,即A∪B=Ω,且A∩B=∅,那么称事件A与事件B互为对立.事件A的对立事件记为A.
    对立事件一定是互斥事件,互斥事件不一定是对立事件
    相关教案

    数学人教A版 (2019)10.1 随机事件与概率教案: 这是一份数学人教A版 (2019)10.1 随机事件与概率教案,共6页。

    高中数学人教A版 (2019)必修 第二册10.1 随机事件与概率教案: 这是一份高中数学人教A版 (2019)必修 第二册10.1 随机事件与概率教案,共6页。

    必修 第二册第六章 平面向量及其应用6.4 平面向量的应用教学设计及反思: 这是一份必修 第二册第六章 平面向量及其应用6.4 平面向量的应用教学设计及反思,共4页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map