高中人教A版 (2019)10.1 随机事件与概率示范课ppt课件
展开
这是一份高中人教A版 (2019)10.1 随机事件与概率示范课ppt课件,共18页。PPT课件主要包含了情境引入,课堂探究,应用举例,归纳总结,课堂练习等内容,欢迎下载使用。
一般而言,给出了一个数学对象的定义,就可以从定义出发研究这个数学对象的性质,类似地, 在给出了概率的定义后,我们来研究概率的基本性质.
概率表示的是一个事件发生的可能性大小,想一想概率的取值范围是什么?那些特殊的事件的概率是怎样的?
(1)任何事件的概率都是非负的;
(2)在每次试验中,必然事件一定发生,不可能事件一定不会发生.
一个袋子中有大小和质地相同的4个球,其中有2个红色球(标号为1和2),2个绿色球(标号为3和4),从袋中不放回地依次随机摸出2个球.设事件,R=“两次都摸到红球”,G=“两次都摸到绿球”. 事件R,G的概率之间具有怎样的关系?
一般地,因为事件A与事件B互斥,即A与B不含有相同的样本点,所以n(A∪B)= n(A)+n(B),这等价于P(A∪B)= P(A)+P(B),即两个互斥事件的和事件的概率等于这两个事件的概率之和.
性质3 如果事件A与事件B互斥,那么P(A∪B)= P(A)+P(B).
扩展:如果事件A1,A2,…,Am两两互斥,那么事件A1∪A2∪…∪Am发生的概率等于这m个事件分别发生的概率之和,即 P(A1∪A2∪ … ∪Am)=P(A1)+P(A2)+…+P(Am)
互斥事件的概率加法公式可以推广到多个事件的情况.
若事件A与事件B有包含关系,那么这两个事件的概率有什么关系吗?
用R1∪R2 表示“两个球中有红球”,那么P(R1∪R2)和P(R1)+P(R2)相等吗?如果不相等,请你说明原因,并思考如何计算P(R1∪R2)
一个袋子中有大小和质地相同的4个球,其中有2个红色球(标号为1和2),2个绿色球(标号为3和4),从袋中不放回地依次随机摸出2个球.设事件,R=“两次都摸到红球”,G=“两次都摸到绿球”.
(1)C=“抽到红花色”,求P(C);(2)D=“抽到黑花色”,求P(D).
为了推广一种新饮料,某饮料生产企业开展了有奖促销活动:将6罐这种饮料装一箱,每箱中都放置2罐能够中奖的饮料.若从一箱中随机抽出2罐,能中奖的概率为多少?
“中奖”包括第一罐中奖但第二罐不中奖、第一罐不中奖但第二罐中奖、两罐都中奖三种情况.如果设A=“中奖”,A1=“第一罐中奖”,A2=“第二罐中奖”,那么就可以通过事件的运算构建相应事件,并利用概率的性质解决问题.
我们借助树状图来求相应事件的样本点数.
1.从一副混合后的扑克牌(不含大小王)中,随机抽取1张,事件A为“抽得红桃K”,事件B为“抽得黑桃”,则P(A∪B)=( )
2.某射手在一次射击中,射中10环,9环,8环的概率分别是0.2,0.3,0.1,则该射手在一次射击中不够8环的概率为( )
相关课件
这是一份数学必修 第二册10.1 随机事件与概率课文课件ppt,共14页。PPT课件主要包含了新课探究,经典例题,配套练习,当堂测试等内容,欢迎下载使用。
这是一份高中数学人教A版 (2019)必修 第二册第十章 概率10.1 随机事件与概率背景图ppt课件,共26页。
这是一份高中人教A版 (2019)第十章 概率10.1 随机事件与概率多媒体教学课件ppt,共22页。PPT课件主要包含了PA≥0,PA+PB,-PA,-PB,-PA∩B,答案C,答案B等内容,欢迎下载使用。