搜索
    上传资料 赚现金
    英语朗读宝

    新教材适用2024版高考数学二轮总复习第1篇专题3函数与导数第4讲利用导数研究不等式核心考点1不等式的证明教师用书

    新教材适用2024版高考数学二轮总复习第1篇专题3函数与导数第4讲利用导数研究不等式核心考点1不等式的证明教师用书第1页
    新教材适用2024版高考数学二轮总复习第1篇专题3函数与导数第4讲利用导数研究不等式核心考点1不等式的证明教师用书第2页
    新教材适用2024版高考数学二轮总复习第1篇专题3函数与导数第4讲利用导数研究不等式核心考点1不等式的证明教师用书第3页
    还剩7页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新教材适用2024版高考数学二轮总复习第1篇专题3函数与导数第4讲利用导数研究不等式核心考点1不等式的证明教师用书

    展开

    这是一份新教材适用2024版高考数学二轮总复习第1篇专题3函数与导数第4讲利用导数研究不等式核心考点1不等式的证明教师用书,共10页。试卷主要包含了 已知函数f=a-x, 证明, 已知函数f=xeax-ex等内容,欢迎下载使用。

    1. (2023·全国新课标Ⅰ卷)已知函数f(x)=a(ex+a)-x.
    (1)讨论f(x)的单调性;
    (2)证明:当a>0时,f(x)>2ln a+eq \f(3,2).
    【解析】 (1)因为f(x)=a(ex+a)-x,定义域为R,所以f′(x)=aex-1,
    当a≤0时,由于ex>0,则aex≤0,故f′(x)=aex-10时,令f′(x)=aex-1=0,解得x=-ln a,
    当x0,则f(x)在(-ln a,+∞)上单调递增;
    综上:当a≤0时,f(x)在R上单调递减;
    当a>0时,f(x)在(-∞,-ln a)上单调递减,f(x)在(-ln a,+∞)上单调递增.
    (2)证明:证法一:由(1)得,f(x)min=f(-ln a)=a(e-ln a+a)+ln a=1+a2+ln a,
    要证f(x)>2ln a+eq \f(3,2),即证1+a2+ln a>2ln a+eq \f(3,2),即证a2-eq \f(1,2)-ln a>0恒成立,
    令g(a)=a2-eq \f(1,2)-ln a(a>0),则g′(a)=2a-eq \f(1,a)=eq \f(2a2-1,a),
    令g′(a)0,则g(a)>0恒成立,所以当a>0时,f(x)>2ln a+eq \f(3,2)恒成立,证毕.
    证法二:令h(x)=ex-x-1,则h′(x)=ex-1,
    由于y=ex在R上单调递增,所以h′(x)=ex-1在R上单调递增,
    又h′(0)=e0-1=0,
    所以当x0;
    所以h(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,
    故h(x)≥h(0)=0,则ex≥x+1,当且仅当x=0时,等号成立,
    因为f(x)=a(ex+a)-x=aex+a2-x=ex+ln a+a2-x≥x+ln a+1+a2-x,
    当且仅当x+ln a=0,即x=-ln a时,等号成立,
    所以要证f(x)>2ln a+eq \f(3,2),即证x+ln a+1+a2-x>2ln a+eq \f(3,2),即证a2-eq \f(1,2)-ln a>0,
    令g(a)=a2-eq \f(1,2)-ln a(a>0),则g′(a)=2a-eq \f(1,a)=eq \f(2a2-1,a),
    令g′(a)0,则g(a)>0恒成立,
    所以当a>0时,f(x)>2ln a+eq \f(3,2)恒成立,证毕.
    2. (2023·全国新课标Ⅱ卷)(1)证明:当0

    相关试卷

    新教材适用2024版高考数学二轮总复习第1篇专题3函数与导数第5讲利用导数研究函数的零点问题核心考点1判断函数零点的个数教师用书:

    这是一份新教材适用2024版高考数学二轮总复习第1篇专题3函数与导数第5讲利用导数研究函数的零点问题核心考点1判断函数零点的个数教师用书,共8页。

    新教材适用2024版高考数学二轮总复习第1篇专题3函数与导数第4讲利用导数研究不等式核心考点2不等式恒成立能成立存在性问题教师用书:

    这是一份新教材适用2024版高考数学二轮总复习第1篇专题3函数与导数第4讲利用导数研究不等式核心考点2不等式恒成立能成立存在性问题教师用书,共3页。

    新教材适用2024版高考数学二轮总复习第1篇专题3函数与导数第3讲导数的简单应用核心考点3利用导数研究函数的极值与最值教师用书:

    这是一份新教材适用2024版高考数学二轮总复习第1篇专题3函数与导数第3讲导数的简单应用核心考点3利用导数研究函数的极值与最值教师用书,共4页。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map