- 专题05 网格作图(平移、旋转、对称)-备战2024年中考数学重难题型(全国通用) 试卷 0 次下载
- 专题06 方程(组)及不等式的应用(一次方程、分式方程、不等式方程、二次方程应用)-备战2024年中考数学重难题型(全国通用) 试卷 0 次下载
- 专题08 圆的相关证明与计算(基本性质、三角形相似、锐角三角函数)-备战2024年中考数学重难题型(全国通用) 试卷 0 次下载
- 专题09 函数的实际应用(行程问题、最优方案、阶梯费用)-备战2024年中考数学重难题型(全国通用) 试卷 0 次下载
- 专题10 函数的实际应用(利润最值、抛物线型、几何图形)-备战2024年中考数学重难题型(全国通用) 试卷 1 次下载
专题07 简单几何证明题(三角形全等、特殊四边形判定、与相似有关的证明)-备战2024年中考数学重难题型(全国通用)
展开类型一三角形全等
1.(2022·西藏)如图,已知AD平分∠BAC,AB=AC.求证:△ABD≌△ACD.
2.(2022·湖南省益阳市)如图,在Rt△ABC中,∠B=90°,CD//AB,DE⊥AC于点E,且CE=AB.求证:△CED≌△ABC.
3.(2022·江苏省南通市)如图,AC和BD相交于点O,OA=OC,OB=OD.
(1)求证:∠A=∠C;
(2)求证:AB//CD.
4.(2022·上海市)如图所示,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB上,且CF=BE,AE2=AQ⋅AB.
求证:(1)∠CAE=∠BAF;
(2)CF⋅FQ=AF⋅BQ.
5.(2022·贵州省铜仁市)如图,点C在BD上,AB⊥BD,ED⊥BD,AC⊥CE,AB=CD.求证:△ABC≌△CDE.
6.(2022·广东省云浮市)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.
7.(2022·四川省宜宾市)已知:如图,点A、D、C、F在同一直线上,AB//DE,∠B=∠E,BC=EF.求证:AD=CF.
8.(2022·陕西省)如图,在△ABC中,点D在边BC上,CD=AB,DE//AB,∠DCE=∠A.求证:DE=BC.
9.(2022·湖南省衡阳市)如图,在△ABC中,AB=AC,D、E是BC边上的点,且BD=CE.求证:AD=AE.
10.(2022·四川省乐山市)如图,B是线段AC的中点,AD//BE,BD//CE.求证:△ABD≌△BCE.
11.(2021·湖南衡阳市·中考真题)如图,点A、B、D、E在同一条直线上,.求证:.
12.(2021·四川乐山市·中考真题)如图,已知,,与相交于点,求证:.
13.(2021·四川泸州市·中考真题)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE
14.(2021·云南中考真题)如图,在四边形中,与相交于点E.求证:.
15.(2020•菏泽)如图,在△ABC中,∠ACB=90°,点E在AC的延长线上,ED⊥AB于点D,若BC=ED,求证:CE=DB.
16.(2020•南充)如图,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,BC=DE.求证:AB=CD.
17.(2020•硚口区模拟)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.
18.(2020•铜仁市)如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.
19.(2020•无锡)如图,已知AB∥CD,AB=CD,BE=CF.
求证:
(1)△ABF≌△DCE;
(2)AF∥DE.
20.(2020•台州)如图,已知AB=AC,AD=AE,BD和CE相交于点O.
(1)求证:△ABD≌△ACE;
(2)判断△BOC的形状,并说明理由.
21.如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AE=DF,∠A=∠D.
(1)求证:AB=CD;
(2)若AB=CF,∠B=40°,求∠D的度数.
类型二特殊四边形判定及性质
22.(2022·广西壮族自治区河池市)如图,点A,F,C,D在同一直线上,AB=DE,AF=CD,BC=EF.
(1)求证:∠ACB=∠DFE;
(2)连接BF,CE,直接判断四边形BFEC的形状.
23.(2022·青海省西宁市)如图,四边形ABCD是菱形,AE⊥BC于点E,AF⊥CD于点F.
(1)求证:△ABE≌△ADF;
(2)若AE=4,CF=2,求菱形的边长.
24.(2022·江苏省无锡市)如图,已知四边形ABCD为矩形,AB=22,BC=4,点E在BC上,CE=AE,将△ABC沿AC翻折到△AFC,连接EF.
(1)求EF的长;
(2)求sin∠CEF的值.
25.(2022·湖北省荆门市)如图,已知矩形ABCD中,AB=8,BC=x(0
(2)求tan∠DAF的值(用含x的式子表示).
26.(2022·四川省遂宁市)如图,在菱形ABCD中,对角线AC、BD相交于点O,点E是AD的中点,连接OE,过点D作DF//AC交OE的延长线于点F,连接AF.
(1)求证:△AOE≌△DFE;
(2)判定四边形AODF的形状并说明理由.
27.(2022·湖北省)如图,已知E、F分别是▱ABCD的边BC,AD上的点,且BE=DF
(1)求证:四边形AECF是平行四边形;
(2)若四边形AECF是菱形,且BC=10,∠BAC=90°,求BE的长.
28.(2022·云南省)如图,在平行四边形ABCD中,连接BD,E为线段AD的中点,延长BE与CD的延长线交于点F,连接AF,∠BDF=90°.
(1)求证:四边形ABDF是矩形;
(2)若AD=5,DF=3,求四边形ABCF的面积S.
29.(2022·广西壮族自治区河池市)如图,点A,F,C,D在同一直线上,AB=DE,AF=CD,BC=EF.
(1)求证:∠ACB=∠DFE;
(2)连接BF,CE,直接判断四边形BFEC的形状.
30.(2022·湖南省郴州市)如图,四边形ABCD是菱形,E,F是对角线AC上的两点,且AE=CF,连接BF,FD,DE,EB.求证:四边形DEBF是菱形.
31.(2022·山东省聊城市)如图,△ABC中,点D是AB上一点,点E是AC的中点,过点C作CF//AB,交DE的延长线于点F.
(1)求证:AD=CF;
(2)连接AF,CD.如果点D是AB的中点,那么当AC与BC满足什么条件时,四边形ADCF是菱形,证明你的结论.
32.(2022·北京市)如图,在▱ABCD中,AC,BD交于点O,点E,F在AC上,AE=CF.
(1)求证:四边形EBFD是平行四边形;
(2)若∠BAC=∠DAC,求证:四边形EBFD是菱形.
33.(2022·湖南省张家界市)如图,菱形ABCD的对角线AC、BD相交于点O,点E是CD的中点,连接OE,过点C作CF//BD交OE的延长线于点F,连接DF.
(1)求证:△ODE≌△FCE;
(2)试判断四边形ODFC的形状,并写出证明过程.
34.(2022·四川省内江市)如图,在▱ABCD中,点E、F在对角线BD上,且BE=DF.
求证:(1)△ABE≌△CDF;
(2)四边形AECF是平行四边形.
35.(2022·湖南省长沙市)如图,在▱ABCD中,对角线AC,BD相交于点O,AB=AD.
(1)求证:AC⊥BD;
(2)若点E,F分别为AD,AO的中点,连接EF,EF=32,AO=2,求BD的长及四边形ABCD的周长.
36.(2021·四川广安市·中考真题)如图,四边形是菱形,点、分别在边、的延长线上,且.连接、.
求证:.
37.(2021·江苏扬州市·中考真题)如图,在中,的角平分线交于点D,.
(1)试判断四边形的形状,并说明理由;
(2)若,且,求四边形的面积.
38.(2021·江苏连云港市·中考真题)如图,点C是的中点,四边形是平行四边形.
(1)求证:四边形是平行四边形;
(2)如果,求证:四边形是矩形.
39.(2021·四川遂宁市·中考真题)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,过点O的直线EF与BA、DC的延长线分别交于点E、F.
(1)求证:AE=CF;
(2)请再添加一个条件,使四边形BFDE是菱形,并说明理由.
40(2020•黄冈)已知:如图,在▱ABCD中,点O是CD的中点,连接AO并延长,交BC的延长线于点E,求证:AD=CE.
41.(2020•扬州)如图,▱ABCD的对角线AC、BD相交于点O,过点O作EF⊥AC,分别交AB、DC于点E、F,连接AF、CE.
(1)若OE=32,求EF的长;
(2)判断四边形AECF的形状,并说明理由.
42.(2020•青岛)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE=BF,连接AE,CF.
(1)求证:△ADE≌△CBF;
(2)连接AF,CE.当BD平分∠ABC时,四边形AFCE是什么特殊四边形?请说明理由.
43.(2020•新疆)如图,四边形ABCD是平行四边形,DE∥BF,且分别交对角线AC于点E,F,连接BE,DF.
(1)求证:AE=CF;
(2)若BE=DE,求证:四边形EBFD为菱形.
类型三与相似有关的证明
44.(2021·广东中考真题)如图,边长为1的正方形中,点E为的中点.连接,将沿折叠得到交于点G,求的长.
45.(2021·湖北鄂州市·中考真题)如图,在中,点、分别在边、上,且.
(1)探究四边形的形状,并说明理由;
(2)连接,分别交、于点、,连接交于点.若,,求的长.
46.(2021·北京中考真题)如图,在中,为的中点,点在上,以点为中心,将线段顺时针旋转得到线段,连接.
(1)比较与的大小;用等式表示线段之间的数量关系,并证明;
(2)过点作的垂线,交于点,用等式表示线段与的数量关系,并证明.
47.(2020•长沙)在矩形ABCD中,E为DC边上一点,把△ADE沿AE翻折,使点D恰好落在BC边上的点F.
(1)求证:△ABF∽△FCE;
(2)若AB=23,AD=4,求EC的长;
(3)若AE﹣DE=2EC,记∠BAF=α,∠FAE=β,求tanα+tanβ的值.
48.(2020•怀化)如图,在⊙O中,AB为直径,点C为圆上一点,延长AB到点D,使CD=CA,且∠D=30°.
(1)求证:CD是⊙O的切线.
(2)分别过A、B两点作直线CD的垂线,垂足分别为E、F两点,过C点作AB的垂线,垂足为点G.求证:CG2=AE•BF.
专题08三角形的计算与证明最新模拟40道押题预测(全等、等腰、直角、相似)-【临考预测】2023中考数学重难题型押题培优【全国通用】: 这是一份专题08三角形的计算与证明最新模拟40道押题预测(全等、等腰、直角、相似)-【临考预测】2023中考数学重难题型押题培优【全国通用】,文件包含专题08三角形的计算与证明最新模拟40道押题预测全等等腰直角相似-临考预测2023中考数学重难题型押题培优全国通用原卷版docx、专题08三角形的计算与证明最新模拟40道押题预测全等等腰直角相似-临考预测2023中考数学重难题型押题培优全国通用解析版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。
专题22 二次函数与几何图形综合题(与三角形全等或三角形相似有关问题)-备战2024年中考数学重难题型(全国通用): 这是一份专题22 二次函数与几何图形综合题(与三角形全等或三角形相似有关问题)-备战2024年中考数学重难题型(全国通用),文件包含专题22二次函数与几何图形综合题与三角形全等或三角形相似有关问题原卷版docx、专题22二次函数与几何图形综合题与三角形全等或三角形相似有关问题解析版docx等2份试卷配套教学资源,其中试卷共112页, 欢迎下载使用。
专题23 二次函数与几何图形综合题(与特殊四边形有关问题)-备战2024年中考数学重难题型(全国通用): 这是一份专题23 二次函数与几何图形综合题(与特殊四边形有关问题)-备战2024年中考数学重难题型(全国通用),文件包含专题23二次函数与几何图形综合题与特殊四边形有关问题原卷版docx、专题23二次函数与几何图形综合题与特殊四边形有关问题解析版docx等2份试卷配套教学资源,其中试卷共100页, 欢迎下载使用。