|试卷下载
终身会员
搜索
    上传资料 赚现金
    专题09 函数的实际应用(行程问题、最优方案、阶梯费用)-备战2024年中考数学重难题型(全国通用)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题09 函数的实际应用(行程问题、最优方案、阶梯费用)(原卷版).docx
    • 解析
      专题09 函数的实际应用(行程问题、最优方案、阶梯费用)(解析版).docx
    专题09 函数的实际应用(行程问题、最优方案、阶梯费用)-备战2024年中考数学重难题型(全国通用)01
    专题09 函数的实际应用(行程问题、最优方案、阶梯费用)-备战2024年中考数学重难题型(全国通用)02
    专题09 函数的实际应用(行程问题、最优方案、阶梯费用)-备战2024年中考数学重难题型(全国通用)03
    专题09 函数的实际应用(行程问题、最优方案、阶梯费用)-备战2024年中考数学重难题型(全国通用)01
    专题09 函数的实际应用(行程问题、最优方案、阶梯费用)-备战2024年中考数学重难题型(全国通用)02
    专题09 函数的实际应用(行程问题、最优方案、阶梯费用)-备战2024年中考数学重难题型(全国通用)03
    还剩22页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题09 函数的实际应用(行程问题、最优方案、阶梯费用)-备战2024年中考数学重难题型(全国通用)

    展开
    这是一份专题09 函数的实际应用(行程问题、最优方案、阶梯费用)-备战2024年中考数学重难题型(全国通用),文件包含专题09函数的实际应用行程问题最优方案阶梯费用原卷版docx、专题09函数的实际应用行程问题最优方案阶梯费用解析版docx等2份试卷配套教学资源,其中试卷共73页, 欢迎下载使用。

    1.(2022·浙江湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.
    (1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?
    (2)如图,图中OB,AB分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t(小时)的函数关系的图象.试求点B的坐标和AB所在直线的解析式;
    (3)假设大巴出发a小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a的值.
    2.(2022·新疆)A,B两地相距,甲、乙两人分别开车从A地出发前往B地,其中甲先出发,如图是甲,乙行驶路程随行驶时间变化的图象,请结合图象信息.解答下列问题:
    (1)填空:甲的速度为___________;(2)分别求出与x之间的函数解析式;
    (3)求出点C的坐标,并写点C的实际意义.
    3.(2022·浙江丽水)因疫情防控需婴,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是,货车行驶时的速度是.两车离甲地的路程与时间的函数图象如图.(1)求出a的值;(2)求轿车离甲地的路程与时间的函数表达式;(3)问轿车比货车早多少时间到达乙地?
    4.(2022·天津)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.
    已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓,超市离学生公寓,小琪从学生公寓出发,匀速步行了到阅览室;在阅览室停留后,匀速步行了到超市;在超市停留后,匀速骑行了返回学生公寓.给出的图象反映了这个过程中小琪离学生公寓的距离与离开学生公寓的时间之间的对应关系.
    请根据相关信息,解答下列问题:
    (1)填表:
    (2)填空:①阅览室到超市的距离为___________;
    ②小琪从超市返回学生公寓的速度为___________;
    ③当小琪离学生公寓的距离为时,他离开学生公寓的时间为___________.
    (3)当时,请直接写出y关于x的函数解析式.
    5.(2021·陕西中考真题)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1min后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回“鼠”、“猫”距起点的距离与时间之间的关系如图所示.
    (1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是______;
    (2)求的函数表达式;
    (3)求“猫”从起点出发到返回至起点所用的时间.
    6.(2021·天津中考真题)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.
    已知学校、书店、陈列馆依次在同一条直线上,书店离学校,陈列馆离学校.李华从学校出发,匀速骑行到达书店;在书店停留后,匀速骑行到达陈列馆;在陈列馆参观学习一段时间,然后回学校;回学校途中,匀速骑行后减速,继续匀速骑行回到学校.给出的图象反映了这个过程中李华离学校的距离与离开学校的时间之间的对应关系.
    请根据相关信息,解答下列问题:
    (Ⅰ)填表
    (Ⅱ)填空:
    ①书店到陈列馆的距离为________;
    ②李华在陈列馆参观学的时间为_______h;
    ③李华从陈列馆回学校途中,减速前的骑行速度为______;
    ④当李华离学校的距离为时,他离开学校的时间为_______h.
    (Ⅲ)当时,请直接写出y关于x的函数解析式.
    7.(2021·山东临沂市·中考真题)公路上正在行驶的甲车,发现前方20m处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s(单位:m)、速度v(单位:m/s)与时间t(单位:s) 的关系分别可以用二次函数和一次函数表示,其图象如图所示.
    (1)当甲车减速至9m/s时,它行驶的路程是多少?
    (2)若乙车以10m/s的速度匀速行驶,两车何时相距最近,最近距离是多少?
    8.(2021·黑龙江鹤岗市·中考真题)已知A、B两地相距,一辆货车从A地前往B地,途中因装载货物停留一段时间.一辆轿车沿同一条公路从B地前往A地,到达A地后(在A地停留时间不计)立即原路原速返回.如图是两车距B地的距离与货车行驶时间之间的函数图象,结合图象回答下列问题:
    (1)图中m的值是__________;轿车的速度是________;
    (2)求货车从A地前往B地的过程中,货车距B地的距离与行驶时间之间的函数关系式;
    (3)直接写出轿车从B地到A地行驶过程中,轿车出发多长时间与货车相距?
    9.(2021·江苏南京市·中考真题)甲、乙两人沿同一直道从A地去B地,甲比乙早出发,乙的速度是甲的2倍.在整个行程中,甲离A地的距离(单位:m)与时间x(单位:)之间的函数关系如图所示.
    (1)在图中画出乙离A地的距离(单位:m)与时间x之间的函数图;
    (2)若甲比乙晚到达B地,求甲整个行程所用的时间.
    10.(2021·江苏宿迁市·中考真题)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s(km)与慢车行驶的时间t(h)之间的关系如图:
    (1)快车的速度为 km/h,C点的坐标为 .
    (2)慢车出发多少小时候,两车相距200km.
    11.(2021·黑龙江绥化市·中考真题)小刚和小亮两人沿着直线跑道都从甲地出发,沿着同一方向到达乙地,甲乙两地之间的距离是720米,先到乙地的人原地休息,已知小刚先从甲地出发4秒后,小亮从甲地出发,两人均保持匀速前行.第一次相遇后,保持原速跑一段时间,小刚突然加速,速度比原来增加了2米/秒,并保持这一速度跑到乙地(小刚加速过程忽略不计).小刚与小亮两人的距离(米)与小亮出发时间(秒)之间的函数图象,如图所示.根据所给信息解决以下问题.
    (1)_______,______;
    (2)求和所在直线的解析式;
    (3)直接写出为何值时,两人相距30米.
    12.(2021·浙江绍兴市·中考真题)I号无人机从海拔10m处出发,以10m/min的速度匀速上升,II号无人机从海拔30m处同时出发,以a(m/min)的速度匀速上升,经过5min两架无人机位于同一海拔高度b(m).无人机海拔高度y(m)与时间x(min)的关系如图.两架无人机都上升了15min.
    (1)求b的值及II号无人机海拔高度y(m)与时间x(min)的关系式.
    (2)问无人机上升了多少时间,I号无人机比II号无人机高28米.
    13.(2020·浙江中考真题)A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)
    (1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.
    (2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?
    14.(2020•黑龙江)为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y(单位:千米)与快递车所用时间x(单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.
    (1)求ME的函数解析式;
    (2)求快递车第二次往返过程中,与货车相遇的时间.
    (3)求两车最后一次相遇时离武汉的距离.(直接写出答案)
    15..(2020•天津)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.
    已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7km,图书馆离宿舍1km.周末,小亮从宿舍出发,匀速走了7min到食堂;在食堂停留16min吃早餐后,匀速走了5min到图书馆;在图书馆停留30min借书后,匀速走了10min返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离ykm与离开宿舍的时间xmin之间的对应关系.
    请根据相关信息,解答下列问题:
    (Ⅰ)填表:
    (Ⅱ)填空:
    ①食堂到图书馆的距离为 km;
    ②小亮从食堂到图书馆的速度为 km/min;
    ③小亮从图书馆返回宿舍的速度为 km/min;
    ④当小亮离宿舍的距离为0.6km时,他离开宿舍的时间为 min.
    (Ⅲ)当0≤x≤28时,请直接写出y关于x的函数解析式.
    15.(2020•青岛)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示.
    (1)根据图象求游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;
    (2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43倍.求单独打开甲进水口注满游泳池需多少小时?
    类型二最优方案问题
    16.(2021·云南中考真题)某鲜花销售公司每月付给销售人员的工资有两种方案.
    方案一:没有底薪,只付销售提成;
    方案二:底薪加销售提成.
    如图中的射线,射线分别表示该鲜花销售公司每月按方案一,方案二付给销售人员的工资(单位:元)和(单位:元)与其当月鲜花销售量x(单位:千克)()的函数关系.
    (1)分别求﹑与x的函数解析式(解析式也称表达式);
    (2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克,但其3月份的工资超过2000元.这个公司采用了哪种方案给这名销售人员付3月份的工资?
    17.(2021·浙江宁波市·中考真题)某通讯公司就手机流量套餐推出三种方案,如下表:
    A,B,C三种方案每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系如图所示.
    (1)请直接写出m,n的值.
    (2)在A方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式.
    (3)在这三种方案中,当每月使用的流量超过多少兆时,选择C方案最划算?
    18.(2021·贵州毕节市·中考真题)某中学计划暑假期间安排2名老师带领部分学生参加红色旅游.甲、乙两家旅行社的服务质量相同,且报价都是每人1000元,经协商,甲旅行社的优惠条件是:老师、学生都按八折收费:乙旅行社的优惠条件是:两位老师全额收费,学生都按七五折收费,
    (1)设参加这次红色旅游的老师学生共有名,,(单位:元)分别表示选择甲、乙两家旅行社所需的费用,求,关于的函数解析式;
    (2)该校选择哪家旅行社支付的旅游费用较少?
    19.(2021·江苏南通市·中考真题)A,B两家超市平时以同样的价格出售相同的商品.暑假期间两家超市都进行促销活动,促销方式如下:
    A超市:一次购物不超过300元的打9折,超过300元后的价格部分打7折;
    B超市:一次购物不超过100元的按原价,超过100元后的价格部分打8折.
    例如,一次购物的商品原价为500元,
    去A超市的购物金额为:(元);
    去B超市的购物金额为:(元).
    (1)设商品原价为x元,购物金额为y元,分别就两家超市的促销方式写出y关于x的函数解析式;
    (2)促销期间,若小刚一次购物的商品原价超过200元,他去哪家超市购物更省钱?请说明理由.
    20.(2020•怀化)某商店计划采购甲、乙两种不同型号的平板电脑共20台,已知甲型平板电脑进价1600元,售价2000元;乙型平板电脑进价为2500元,售价3000元.
    (1)设该商店购进甲型平板电脑x台,请写出全部售出后该商店获利y与x之间函数表达式.
    (2)若该商店采购两种平板电脑的总费用不超过39200元,全部售出所获利润不低于8500元,请设计出所有采购方案,并求出使商店获得最大利润的采购方案及最大利润.
    21.(2021·贵州安顺市·中考真题)为庆祝“中国共产党的百年华诞”,某校请广告公司为其制作“童心向党”文艺活动的展板、宣传册和横幅,其中制作宣传册的数量是展板数量的5倍,广告公司制作每件产品所需时间和利润如下表:
    (1)若制作三种产品共计需要25小时,所获利润为450元,求制作展板、宣传册和横幅的数量;
    (2)若广告公司所获利润为700元,且三种产品均有制作.求制作三种产品总量的最小值.
    22.(2021·黑龙江鹤岗市·中考真题)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.
    (1)求购进1件甲种农机具和1件乙种农机具各需多少万元?
    (2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?
    (3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种),请直接写出再次购买农机具的方案有哪几种?
    23.(2021·黑龙江中考真题)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需万元,购进1件甲种农机具和3件乙种农机具共需3万元.
    (1)求购进1件甲种农机具和1件乙种农机具各需多少万元?
    (2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于万元又不超过12万元,设购进甲种农机具件,则有哪几种购买方案?
    (3)在(2)的条件下,哪种购买方案需要的资金最少,最少资金是多少?
    24.(2020•乐山)某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:
    (1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?
    (2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?
    25.(2020•泸州)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.
    (1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?
    (2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?
    26.(2020•河南)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.
    方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;
    方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.
    设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案所需费用为y2(元),且y2=k2x.其函数图象如图所示.
    (1)求k1和b的值,并说明它们的实际意义;
    (2)求打折前的每次健身费用和k2的值;
    (3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.
    27.(2020·黑龙江穆棱?朝鲜族学校中考真题)某商场准备购进A、B两种型号电脑,每台A型号电脑进价比每台B型号电脑多500元,用40 000元购进A型号电脑的数量与用30 000元购进B型号电脑的数量相同,请解答下列问题:
    (1)A,B型号电脑每台进价各是多少元?
    (2)若每台A型号电脑售价为2 500元,每台B型号电脑售价为1 800元,商场决定同时购进A,B两种型号电脑20台,且全部售出,请写出所获的利润y(单位:元)与A型号电脑x(单位:台)的函数关系式,若商场用不超过36 000元购进A,B两种型号电脑,A型号电脑至少购进10台,则有几种购买方案?
    (3)在(2)问的条件下,将不超过所获得的最大利润再次购买A,B两种型号电脑捐赠给某个福利院,请直接写出捐赠A,B型号电脑总数最多是多少台.
    28.(2020·山东中考真题)为加快复工复产,某企业需运输批物资.据调查得知,2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱.
    (1)求1辆大货车和1辆小货车一次可以分别运输多少箱物资;
    (2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用5 000元,每辆小货车一次需费用3000元.若运输物资不少于1500箱,且总费用小于54000元,请你列出所有运输方案,并指出哪种方案所需费用最少,最少费用是多少?
    类型三阶梯费用问题
    29.(辽宁省营口市2021年中考真题试卷)某商家正在热销一种商品,其成本为30元/件,在销售过程中发现随着售价增加,销售量在减少.商家决定当售价为60元/件时,改变销售策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销售量y(件)与售价x(元/件)满足如图所示的函数关系,(其中,且x为整数)
    (1)直接写出y与x的函数关系式;
    (2)当售价为多少时,商家所获利润最大,最大利润是多少?
    30.(2020•襄阳)受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”某水果经销商主动从该种植专业户购进甲,乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按25元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.
    (1)直接写出当0≤x≤50和x>50时,y与x之间的函数关系式;
    (2)若经销商计划一次性购进甲,乙两种水果共100千克,且甲种水果不少于40千克,但又不超过60千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额w(元)最少?
    (3)若甲,乙两种水果的销售价格分别为40元/千克和36元/千克.经销商按(2)中甲,乙两种水果购进量的分配比例购进两种水果共a千克,且销售完a千克水果获得的利润不少于1650元,求a的最小值.
    离开学生公寓的时间/
    5
    8
    50
    87
    112
    离学生公寓的距离/
    0.5
    1.6
    离开学校的时间/
    离学校的距离/
    离开宿舍的时间/min
    2
    5
    20
    23
    30
    离宿舍的距离/km
    0.2

    0.7


    A方案
    B方案
    C方案
    每月基本费用(元)
    20
    56
    266
    每月免费使用流量(兆)
    1024
    m
    无限
    超出后每兆收费(元)
    n
    n
    产品
    展板
    宣传册
    横幅
    制作一件产品所需时间(小时)
    1
    制作一件产品所获利润(元)
    20
    3
    10
    车型
    每车限载人数(人)
    租金(元/辆)
    商务车
    6
    300
    轿车
    4
    相关试卷

    专题04一次函数及应用大题押题(最新模拟50道:图象性质、行程、利润、方案、几何)-【临考预测】2023中考数学重难题型押题培优【全国通用】: 这是一份专题04一次函数及应用大题押题(最新模拟50道:图象性质、行程、利润、方案、几何)-【临考预测】2023中考数学重难题型押题培优【全国通用】,文件包含专题04一次函数及应用大题押题最新模拟50道图象性质行程利润方案几何-临考预测2023中考数学重难题型押题培优全国通用原卷版docx、专题04一次函数及应用大题押题最新模拟50道图象性质行程利润方案几何-临考预测2023中考数学重难题型押题培优全国通用解析版docx等2份试卷配套教学资源,其中试卷共108页, 欢迎下载使用。

    专题10 函数的实际应用(利润最值、抛物线型、几何图形)-备战2024年中考数学重难题型(全国通用): 这是一份专题10 函数的实际应用(利润最值、抛物线型、几何图形)-备战2024年中考数学重难题型(全国通用),文件包含专题10函数的实际应用利润最值抛物线型几何图形原卷版docx、专题10函数的实际应用利润最值抛物线型几何图形解析版docx等2份试卷配套教学资源,其中试卷共60页, 欢迎下载使用。

    中考数学二轮复习重难点题型突破最优方案问题(含解析): 这是一份中考数学二轮复习重难点题型突破最优方案问题(含解析),共4页。试卷主要包含了 某商品的进价为每件40元等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题09 函数的实际应用(行程问题、最优方案、阶梯费用)-备战2024年中考数学重难题型(全国通用)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map