- 新高考数学一轮复习讲义+分层练习 4.5《函数y=Asin(ωx+φ)的图象及简单应用》教案 (2份打包,原卷版+教师版) 教案 0 次下载
- 新高考数学一轮复习讲义+分层练习 4.6《正弦定理、余弦定理》教案 (2份打包,原卷版+教师版) 教案 0 次下载
- 新高考数学一轮复习讲义+分层练习 5.2《平面向量的基本定理及坐标表示》教案 (2份打包,原卷版+教师版) 教案 0 次下载
- 新高考数学一轮复习讲义+分层练习 5.4《数系的扩充与复数的引入》教案 (2份打包,原卷版+教师版) 教案 0 次下载
- 新高考数学一轮复习讲义+分层练习 6.1《数列的概念与简单表示法》教案 (2份打包,原卷版+教师版) 教案 0 次下载
新高考数学一轮复习讲义+分层练习 5.1《平面向量的概念及线性运算》教案 (2份打包,原卷版+教师版)
展开1.了解向量的实际背景,理解平面向量的概念和两个向量相等的含义,理解向量的几何表示.
2.掌握向量加法、减法的运算,理解其几何意义.
3.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.
4.了解向量线性运算的性质及其几何意义.
1.向量的有关概念
(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).
(2)零向量:长度为0的向量,其方向是任意的.
(3)单位向量:长度等于1个单位的向量.
(4)平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行.
(5)相等向量:长度相等且方向相同的向量.
(6)相反向量:长度相等且方向相反的向量.
2.向量的线性运算
3.共线向量定理
向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使得b=λa.
eq \a\vs4\al([常用结论])
1.若P为线段AB的中点,O为平面内任一点,则eq \(OP,\s\up8(→))=eq \f(1,2)(eq \(OA,\s\up8(→))+eq \(OB,\s\up8(→))).
2.eq \(OA,\s\up8(→))=λeq \(OB,\s\up8(→))+μeq \(OC,\s\up8(→))(λ,μ为实数)O不在直线AB上,若点A,B,C共线,则λ+μ=1.
3.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即eq \(A1A2,\s\up8(→))+eq \(A2A3,\s\up8(→))+eq \(A3A4,\s\up8(→))+…+An﹣1An=eq \(A1An,\s\up8(→)),特别地,一个封闭图形,首尾连接而成的向量和为零向量.
4.与非零向量a共线的单位向量为±eq \f(a,|a|).
一、思考辨析(正确的打“√”,错误的打“×”)
(1)若两个向量共线,则其方向必定相同或相反.( )
(2)若向量eq \(AB,\s\up8(→))与向量eq \(CD,\s\up8(→))是共线向量,则A,B,C,D四点在一条直线上.( )
(3)若a∥b,b∥c,则a∥c.( )
(4)当两个非零向量a,b共线时,一定有b=λa,反之成立.( )
解析:[答案] (1)× (2)× (3)× (4)√
二、教材改编
1.如图,▱ABCD的对角线交于点M,若eq \(AB,\s\up8(→))=a,eq \(AD,\s\up8(→))=b,用a,b表示eq \(MD,\s\up8(→))为( )
A.eq \f(1,2)a+eq \f(1,2)b B.eq \f(1,2)a﹣eq \f(1,2)b
C.﹣eq \f(1,2)a﹣eq \f(1,2)b D.﹣eq \f(1,2)a+eq \f(1,2)b
答案为:D.解析:由题意可知eq \(BD,\s\up8(→))=eq \(AD,\s\up8(→))﹣eq \(AB,\s\up8(→))=b﹣a,
又eq \(BD,\s\up8(→))=2eq \(MD,\s\up8(→)),∴eq \(MD,\s\up8(→))=eq \f(1,2)(b﹣a)=eq \f(1,2)b﹣eq \f(1,2)a,故选D.]
2.对于非零向量a,b,“a+b=eq \a\vs4\al(0)”是“a∥b”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
答案为:A.解析:若a+b=0,则a=﹣b,所以a∥b.
若a∥b,则a+b=0不一定成立,故前者是后者的充分不必要条件.]
3.已知▱ABCD的对角线AC和BD相交于点O,且eq \(OA,\s\up8(→))=a,eq \(OB,\s\up8(→))=b,则eq \(DC,\s\up8(→))=________,eq \(BC,\s\up8(→))=________.(用a,b表示)
b﹣a ﹣a﹣答案为:B.解析:如图,eq \(DC,\s\up8(→))=eq \(AB,\s\up8(→))=eq \(OB,\s\up8(→))﹣eq \(OA,\s\up8(→))=b﹣a,eq \(BC,\s\up8(→))=eq \(OC,\s\up8(→))﹣eq \(OB,\s\up8(→))=﹣eq \(OA,\s\up8(→))﹣eq \(OB,\s\up8(→))=﹣a﹣b.]
4.在平行四边形ABCD中,若|eq \(AB,\s\up8(→))+eq \(AD,\s\up8(→))|=|eq \(AB,\s\up8(→))﹣eq \(AD,\s\up8(→))|,则四边形ABCD的形状为________.
矩形 解析:[如图,因为eq \(AB,\s\up8(→))+eq \(AD,\s\up8(→))=eq \(AC,\s\up8(→)),eq \(AB,\s\up8(→))﹣eq \(AD,\s\up8(→))=eq \(DB,\s\up8(→)),所以|eq \(AC,\s\up8(→))|=|eq \(DB,\s\up8(→))|.由对角线长相等的平行四边形是矩形可知,四边形ABCD是矩形.]
考点1 平面向量的概念
辨析向量有关概念的5个关键点
(1)向量定义的关键是方向和长度.
(2)非零共线向量的关键是方向相同或相反,长度没有限制.
(3)相等向量的关键是方向相同且长度相等.
(4)单位向量的关键是长度都是一个单位长度.
(5)零向量的关键是长度是0,规定零向量与任何向量共线.
1.给出下列命题:
①两个具有公共终点的向量一定是共线向量;
②两个向量不能比较大小,但它们的模能比较大小;
③若λa=0(λ为实数),则λ必为零;
④已知λ,μ为实数,若λa=μb,则a与b共线.
其中正确命题的个数为( )
A.1 B.2 C.3 D.4
答案为:A.解析:①错误.两向量共线要看其方向而不是起点与终点.②正确.因为向量既有大小,又有方向,故它们不能比较大小,但它们的模均为实数,故可以比较大小.③错误.当a=0时,无论λ为何值,λa=eq \a\vs4\al(0).④错误.当λ=μ=0时,λa=μb,此时,a与b可以是任意向量.]
2.给出下列命题:
①若两个向量相等,则它们的起点相同,终点相同;
②若|a|=|b|,则a=b或a=﹣b;
③若A,B,C,D是不共线的四点,且eq \(AB,\s\up8(→))=eq \(DC,\s\up8(→)),则ABCD为平行四边形;
④a=b的充要条件是|a|=|b|且a∥b;
其中真命题的序号是________.
③ 解析:[①错误.两个向量起点相同,终点相同,则两个向量相等;但两个向量相等,不一定有相同的起点和终点.
②错误.|a|=|b|,但a,b方向不确定,所以a,b不一定相等或相反.
③正确.因为eq \(AB,\s\up8(→))=eq \(DC,\s\up8(→)),所以|eq \(AB,\s\up8(→))|=|eq \(DC,\s\up8(→))|且eq \(AB,\s\up8(→))∥eq \(DC,\s\up8(→));
又A,B,C,D是不共线的四点,所以四边形ABCD为平行四边形.
④错误.当a∥b且方向相反时,即使|a|=|b|,也不能得到a=b,所以|a|=|b|且a∥b不是a=b的充要条件,而是必要不充分条件.]
(1)只要不改变向量a的大小和方向,可以自由平移a,平移后的向量与a相等.
(2)在研究向量的有关问题时,一定要结合图形进行分析、判断、求解,这是研究平面向量最重要的方法与技巧.
考点2 平面向量的线性运算
向量线性运算的解题策略
(1)向量的加减常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连向量的和用三角形法则.
(2)找出图形中的相等向量、共线向量,将所求向量与已知向量转化到同一个平行四边形或三角形中求解.
向量的线性运算
(1)在△ABC中,AD为BC边上的中线,E为AD的中点,则eq \(EB,\s\up8(→))=( )
A.eq \f(3,4)eq \(AB,\s\up8(→))﹣eq \f(1,4)eq \(AC,\s\up8(→)) B.eq \f(1,4)eq \(AB,\s\up8(→))﹣eq \f(3,4)eq \(AC,\s\up8(→))
C.eq \f(3,4)eq \(AB,\s\up8(→))+eq \f(1,4)eq \(AC,\s\up8(→)) D.eq \f(1,4)eq \(AB,\s\up8(→))+eq \f(3,4)eq \(AC,\s\up8(→))
(2)如图,在直角梯形ABCD中,AB=2AD=2DC,E为BC边上一点,eq \(BC,\s\up8(→))=3eq \(EC,\s\up8(→)),F为AE的中点,则eq \(BF,\s\up8(→))=( )
A.eq \f(1,3)eq \(AB,\s\up8(→))﹣eq \f(2,3)eq \(AD,\s\up8(→)) B.﹣eq \f(2,3)eq \(AB,\s\up8(→))+eq \f(1,3)eq \(AD,\s\up8(→))
C.﹣eq \f(1,3)eq \(AB,\s\up8(→))+eq \f(2,3)eq \(AD,\s\up8(→)) D.eq \f(2,3)eq \(AB,\s\up8(→))﹣eq \f(1,3)eq \(AD,\s\up8(→))
(1)A (2)B
解析:[(1)eq \(EB,\s\up8(→))=eq \(AB,\s\up8(→))﹣eq \(AE,\s\up8(→))=eq \(AB,\s\up8(→))﹣eq \f(1,2)eq \(AD,\s\up8(→))=eq \(AB,\s\up8(→))﹣eq \f(1,2)×eq \f(1,2)(eq \(AB,\s\up8(→))+eq \(AC,\s\up8(→)))=eq \f(3,4)eq \(AB,\s\up8(→))﹣eq \f(1,4)eq \(AC,\s\up8(→)),故选A.
(2)根据平面向量的运算法则得eq \(BF,\s\up8(→))=eq \f(1,2)eq \(BA,\s\up8(→))+eq \f(1,2)eq \(BE,\s\up8(→)),
eq \(BE,\s\up8(→))=eq \f(2,3)eq \(BC,\s\up8(→)),eq \(BC,\s\up8(→))=eq \(AC,\s\up8(→))﹣eq \(AB,\s\up8(→)).因为eq \(AC,\s\up8(→))=eq \(AD,\s\up8(→))+eq \(DC,\s\up8(→)),eq \(DC,\s\up8(→))=eq \f(1,2)eq \(AB,\s\up8(→)),
所以eq \(BF,\s\up8(→))=﹣eq \f(1,2)eq \(AB,\s\up8(→))+eq \f(1,3)(eq \(AD,\s\up8(→))+eq \f(1,2)eq \(AB,\s\up8(→))﹣eq \(AB,\s\up8(→)))=﹣eq \f(2,3)eq \(AB,\s\up8(→))+eq \f(1,3)eq \(AD,\s\up8(→)),故选B.]
平面向量的线性运算技巧
(1)不含图形的情况:可直接运用相应运算法则求解.
(2)含图形的情况:将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示出来求解.
根据向量线性运算求参数
在△ABC中,eq \(AN,\s\up8(→))=eq \f(1,4)eq \(NC,\s\up8(→)),P是直线BN上一点,若eq \(AP,\s\up8(→))=meq \(AB,\s\up8(→))+eq \f(2,5)eq \(AC,\s\up8(→)),则实数m的值为( )
A.﹣4 B.﹣1 C.1 D.4
答案为:B.解析:∵eq \(AN,\s\up8(→))=eq \f(1,4)eq \(NC,\s\up8(→)),∴eq \(AC,\s\up8(→))=5eq \(AN,\s\up8(→)).又eq \(AP,\s\up8(→))=meq \(AB,\s\up8(→))+eq \f(2,5)eq \(AC,\s\up8(→)),
∴eq \(AP,\s\up8(→))=meq \(AB,\s\up8(→))+2eq \(AN,\s\up8(→)),由B,P,N三点共线可知,m+2=1,∴m=﹣1.]
与向量的线性运算有关的参数问题,一般是构造三角形,利用向量运算的三角形法则进行加法或减法运算,然后通过建立方程组即可求得相关参数的值.
1.(西宁模拟)如图,在△ABC中,点D在BC边上,且CD=2DB,点E在AD边上,且AD=3AE,则用向量eq \(AB,\s\up8(→)),eq \(AC,\s\up8(→))表示eq \(CE,\s\up8(→))为( )
A.eq \f(2,9)eq \(AB,\s\up8(→))+eq \f(8,9)eq \(AC,\s\up8(→)) B.eq \f(2,9)eq \(AB,\s\up8(→))﹣eq \f(8,9)eq \(AC,\s\up8(→))
C.eq \f(2,9)eq \(AB,\s\up8(→))+eq \f(7,9)eq \(AC,\s\up8(→)) D.eq \f(2,9)eq \(AB,\s\up8(→))﹣eq \f(7,9)eq \(AC,\s\up8(→))
答案为:B.解析:由平面向量的三角形法则及向量共线的性质可得eq \(CE,\s\up8(→))=eq \(AE,\s\up8(→))﹣eq \(AC,\s\up8(→))=eq \f(1,3)eq \(AD,\s\up8(→))﹣eq \(AC,\s\up8(→))=eq \f(1,3)(eq \(AB,\s\up8(→))+eq \f(1,3)eq \(BC,\s\up8(→)))﹣eq \(AC,\s\up8(→))=eq \f(1,3)解析:[eq \(AB,\s\up8(→))+eq \f(1,3)(eq \(AC,\s\up8(→))﹣eq \(AB,\s\up8(→)))]﹣eq \(AC,\s\up8(→))=eq \f(2,9)eq \(AB,\s\up8(→))﹣eq \f(8,9)eq \(AC,\s\up8(→)).]
平面向量的概念及线性运算
一、选择题
1.设D,E,F分别为△ABC的三边BC,CA,AB的中点,则eq \(EB,\s\up8(→))+eq \(FC,\s\up8(→))=( )
A.eq \(AD,\s\up8(→)) B.eq \f(1,2)eq \(AD,\s\up8(→)) C.eq \f(1,2)eq \(BC,\s\up8(→)) D.eq \(BC,\s\up8(→))
答案为:A.解析:由题意得eq \(EB,\s\up8(→))+eq \(FC,\s\up8(→))=eq \f(1,2)(eq \(AB,\s\up8(→))+eq \(CB,\s\up8(→)))+eq \f(1,2)(eq \(AC,\s\up8(→))+eq \(BC,\s\up8(→)))=eq \f(1,2)(eq \(AB,\s\up8(→))+eq \(AC,\s\up8(→)))=eq \(AD,\s\up8(→)).]
2.设D为△ABC所在平面内一点,eq \(BC,\s\up8(→))=﹣4eq \(CD,\s\up8(→)),则eq \(AD,\s\up8(→))=( )
A.eq \f(1,4)eq \(AB,\s\up8(→))﹣eq \f(3,4)eq \(AC,\s\up8(→)) B.eq \f(1,4)eq \(AB,\s\up8(→))+eq \f(3,4)eq \(AC,\s\up8(→))
C.eq \f(3,4)eq \(AB,\s\up8(→))﹣eq \f(1,4)eq \(AC,\s\up8(→)) D.eq \f(3,4)eq \(AB,\s\up8(→))+eq \f(1,4)eq \(AC,\s\up8(→))
答案为:B.解析:设eq \(AD,\s\up8(→))=xeq \(AB,\s\up8(→))+yeq \(AC,\s\up8(→)),由eq \(BC,\s\up8(→))=﹣4eq \(CD,\s\up8(→))可得,eq \(BA,\s\up8(→))+eq \(AC,\s\up8(→))=﹣4eq \(CA,\s\up8(→))﹣4eq \(AD,\s\up8(→)),
即﹣eq \(AB,\s\up8(→))﹣3eq \(AC,\s\up8(→))=﹣4xeq \(AB,\s\up8(→))﹣4yeq \(AC,\s\up8(→)),则eq \b\lc\{(\a\vs4\al\c1(-4x=-1,,-4y=-3,))解得eq \b\lc\{(\a\vs4\al\c1(x=\f(1,4),,y=\f(3,4),))
即eq \(AD,\s\up8(→))=eq \f(1,4)eq \(AB,\s\up8(→))+eq \f(3,4)eq \(AC,\s\up8(→)),故选B.]
3.已知向量a,b不共线,且c=λa+b,d=a+(2λ﹣1)b,若c与d共线反向,则实数λ的值为( )
A.1 B.﹣eq \f(1,2)
C.1或﹣eq \f(1,2) D.﹣1或﹣eq \f(1,2)
答案为:B.解析:由于c与d共线反向,则存在实数k使c=kd(k<0),于是λa+b=k解析:[a+(2λ﹣1)b].整理得λa+b=ka+(2λk﹣k)b.
由于a,b不共线,所以有eq \b\lc\{(\a\vs4\al\c1(λ=k,,2λk-k=1,))整理得2λ2﹣λ﹣1=0,
解得λ=1或λ=﹣eq \f(1,2).又因为k<0,所以λ<0,故λ=﹣eq \f(1,2).]
4.在平行四边形ABCD中,点E为CD的中点,BE与AC的交点为F,设eq \(AB,\s\up8(→))=a,eq \(AD,\s\up8(→))=b,则向量eq \(BF,\s\up8(→))=( )
A.eq \f(1,3)a+eq \f(2,3)b B.﹣eq \f(1,3)a﹣eq \f(2,3)b
C.﹣eq \f(1,3)a+eq \f(2,3)b D.eq \f(1,3)a﹣eq \f(2,3)b
答案为:C.解析:由△CEF∽△ABF,且E是CD的中点得eq \f(CE,AB)=eq \f(EF,BF)=eq \f(1,2),
则eq \(BF,\s\up8(→))=eq \f(2,3)eq \(BE,\s\up8(→))=eq \f(2,3)(eq \(BC,\s\up8(→))+eq \(CE,\s\up8(→)))=eq \f(2,3)eq \b\lc\(\rc\)(\a\vs4\al\c1(\(AD,\s\up8(→))-\f(1,2)\(AB,\s\up8(→))))=﹣eq \f(1,3)a+eq \f(2,3)b,故选C.]
5.在△ABC中,AB=2,BC=3,∠ABC=60°,AD为BC边上的高,O为AD的中点,若eq \(AO,\s\up8(→))=λeq \(AB,\s\up8(→))+μeq \(BC,\s\up8(→)),则λ+μ等于( )
A.1 B.eq \f(1,2) C.eq \f(1,3) D.eq \f(2,3)
答案为:D.解析:∵eq \(AD,\s\up8(→))=eq \(AB,\s\up8(→))+eq \(BD,\s\up8(→))=eq \(AB,\s\up8(→))+eq \f(1,3)eq \(BC,\s\up8(→)),∴2eq \(AO,\s\up8(→))=eq \(AB,\s\up8(→))+eq \f(1,3)eq \(BC,\s\up8(→)),即eq \(AO,\s\up8(→))=eq \f(1,2)eq \(AB,\s\up8(→))+eq \f(1,6)eq \(BC,\s\up8(→)).
故λ+μ=eq \f(1,2)+eq \f(1,6)=eq \f(2,3).]
6.已知点O,A,B不在同一条直线上,点P为该平面上一点,且2eq \(OP,\s\up8(→))=2eq \(OA,\s\up8(→))+eq \(BA,\s\up8(→)),则( )
A.点P在线段AB上
B.点P在线段AB的反向延长线上
C.点P在线段AB的延长线上
D.点P不在直线AB上
答案为:B.解析:因为2eq \(OP,\s\up8(→))=2eq \(OA,\s\up8(→))+eq \(BA,\s\up8(→)),所以2eq \(AP,\s\up8(→))=eq \(BA,\s\up8(→)),所以点P在线段AB的反向延长线上,故选B.]
7.如图,在平行四边形ABCD中,M,N分别为AB,AD上的点,且eq \(AM,\s\up8(→))=eq \f(3,4)eq \(AB,\s\up8(→)),eq \(AN,\s\up8(→))=eq \f(2,3)eq \(AD,\s\up8(→)),AC,MN交于点P.若eq \(AP,\s\up8(→))=λeq \(AC,\s\up8(→)),则λ的值为( )
A.eq \f(3,5) B.eq \f(3,7) C.eq \f(3,16) D.eq \f(6,17)
答案为:D.解析:∵eq \(AM,\s\up8(→))=eq \f(3,4)eq \(AB,\s\up8(→)),eq \(AN,\s\up8(→))=eq \f(2,3)eq \(AD,\s\up8(→)),
∴eq \(AP,\s\up8(→))=λeq \(AC,\s\up8(→))=λ(eq \(AB,\s\up8(→))+eq \(AD,\s\up8(→)))=λ(eq \f(4,3)eq \(AM,\s\up8(→))+eq \f(3,2)eq \(AN,\s\up8(→)))=eq \f(4,3)λeq \(AM,\s\up8(→))+eq \f(3,2)λeq \(AN,\s\up8(→)).
∵点M,N,P三点共线,∴eq \f(4,3)λ+eq \f(3,2)λ=1,则λ=eq \f(6,17).故选D.]
二、填空题
8.若eq \(AP,\s\up8(→))=eq \f(1,2)eq \(PB,\s\up8(→)),eq \(AB,\s\up8(→))=(λ+1)eq \(BP,\s\up8(→)),则λ=________.
﹣eq \f(5,2) 解析:[如图,由eq \(AP,\s\up8(→))=eq \f(1,2)eq \(PB,\s\up8(→)),可知点P是线段AB上靠近点A的三等分点,
则eq \(AB,\s\up8(→))=﹣eq \f(3,2)eq \(BP,\s\up8(→)),结合题意可得λ+1=﹣eq \f(3,2),所以λ=﹣eq \f(5,2).
]
9.设e1与e2是两个不共线向量,eq \(AB,\s\up8(→))=3e1+2e2,eq \(CB,\s\up8(→))=ke1+e2,eq \(CD,\s\up8(→))=3e1﹣2ke2,若A,B,D三点共线,则k的值为________.
﹣eq \f(9,4) 解析:[由题意,A,B,D三点共线,故必存在一个实数λ,使得eq \(AB,\s\up8(→))=λeq \(BD,\s\up8(→)).
又eq \(AB,\s\up8(→))=3e1+2e2,eq \(CB,\s\up8(→))=ke1+e2,eq \(CD,\s\up8(→))=3e1﹣2ke2,
所以eq \(BD,\s\up8(→))=eq \(CD,\s\up8(→))﹣eq \(CB,\s\up8(→))=3e1﹣2ke2﹣(ke1+e2)=(3﹣k)e1﹣(2k+1)e2,
所以3e1+2e2=λ(3﹣k)e1﹣λ(2k+1)e2,又因为e1与e2 不共线,
所以eq \b\lc\{(\a\vs4\al\c1(3=λ(3-k),,2=-λ(2k+1),))解得k=﹣eq \f(9,4).]
10.下列命题正确的是________.(填序号)
①向量a,b共线的充要条件是有且仅有一个实数λ,使b=λa;
②在△ABC中,eq \(AB,\s\up8(→))+eq \(BC,\s\up8(→))+eq \(CA,\s\up8(→))=0;
③只有方向相同或相反的向量是平行向量;
④若向量a,b不共线,则向量a+b与向量a﹣b必不共线.
④ 解析:[易知①②③错误.
∵向量a与b不共线,∴向量a,b,a+b与a﹣b均不为零向量.
若a+b与a﹣b共线,则存在实数λ使a+b=λ(a﹣b),即(λ﹣1)a=(1+λ)b,∴eq \b\lc\{(\a\vs4\al\c1(λ-1=0,,1+λ=0,))此时λ无解,故假设不成立,即a+b与a﹣b不共线.]
1.如图所示,平面内有三个向量eq \(OA,\s\up8(→)),eq \(OB,\s\up8(→)),eq \(OC,\s\up8(→)),其中eq \(OA,\s\up8(→))与eq \(OB,\s\up8(→))的夹角为120°,eq \(OA,\s\up8(→))与eq \(OC,\s\up8(→))的夹角为30°,且|eq \(OA,\s\up8(→))|=|eq \(OB,\s\up8(→))|=1,|eq \(OC,\s\up8(→))|=eq \r(3),若eq \(OC,\s\up8(→))=λeq \(OA,\s\up8(→))+μeq \(OB,\s\up8(→)),则λ+μ=( )
A.1 B.2
C.3 D.4
答案为:C.解析:法一:∵eq \(OA,\s\up8(→))与eq \(OB,\s\up8(→))的夹角为120°,eq \(OA,\s\up8(→))与eq \(OC,\s\up8(→))的夹角为30°,且|eq \(OA,\s\up8(→))|=|eq \(OB,\s\up8(→))|=1,|eq \(OC,\s\up8(→))|=eq \r(3),∴由eq \(OC,\s\up8(→))=λeq \(OA,\s\up8(→))+μeq \(OB,\s\up8(→)),两边平方得3=λ2﹣λμ+μ2,①
由eq \(OC,\s\up8(→))=λeq \(OA,\s\up8(→))+μeq \(OB,\s\up8(→)),两边同乘eq \(OA,\s\up8(→))得eq \f(3,2)=λ﹣eq \f(μ,2),两边平方得eq \f(9,4)=λ2﹣λμ+eq \f(μ2,4),②
①﹣②得eq \f(3μ2,4)=eq \f(3,4).根据题图知μ>0,
∴μ=1.代入eq \f(3,2)=λ﹣eq \f(μ,2)得λ=2,∴λ+μ=3.故选C.
法二:建系如图:
由题意可知A(1,0),C(eq \f(3,2),eq \f(\r(3),2)),B(﹣eq \f(1,2),eq \f(\r(3),2)),
∵(eq \f(3,2),eq \f(\r(3),2))=λ(1,0)+μ(﹣eq \f(1,2),eq \f(\r(3),2))=(λ﹣eq \f(1,2)μ,eq \f(\r(3),2)μ).
∵eq \b\lc\{(\a\vs4\al\c1(λ-\f(1,2)μ=\f(3,2),,\f(\r(3),2)μ=\f(\r(3),2),))∴μ=1,λ=2.∴λ+μ=3.]
2.设O在△ABC的内部,D为AB的中点,且eq \(OA,\s\up8(→))+eq \(OB,\s\up8(→))+2eq \(OC,\s\up8(→))=0,则△ABC的面积与△AOC的面积的比值为( )
A.3 B.4 C.5 D.6
答案为:B.解析:如图,∵D为AB的中点,则eq \(OD,\s\up8(→))=eq \f(1,2)(eq \(OA,\s\up8(→))+eq \(OB,\s\up8(→))),又eq \(OA,\s\up8(→))+eq \(OB,\s\up8(→))+2eq \(OC,\s\up8(→))=0,
∴eq \(OD,\s\up8(→))=﹣eq \(OC,\s\up8(→)),∴O为CD的中点,
又∵D为AB中点,∴S△AOC=eq \f(1,2)S△ADC=eq \f(1,4)S△ABC,则eq \f(S△ABC,S△AOC)=4.]
3.如图,在平行四边形ABCD中,O是对角线AC,BD的交点,N是线段OD的中点,AN的延长线与CD交于点E,若eq \(AE,\s\up8(→))=meq \(AB,\s\up8(→))+eq \(AD,\s\up8(→)),则实数m的值为________.
eq \f(1,3).
解析:[由N是OD的中点,得eq \(AN,\s\up8(→))=eq \f(1,2)eq \(AD,\s\up8(→))+eq \f(1,2)eq \(AO,\s\up8(→))=eq \f(1,2)eq \(AD,\s\up8(→))+eq \f(1,4)(eq \(AD,\s\up8(→))+eq \(AB,\s\up8(→)))=eq \f(3,4)eq \(AD,\s\up8(→))+eq \f(1,4)eq \(AB,\s\up8(→)),
又因为A,N,E三点共线,故eq \(AE,\s\up8(→))=λeq \(AN,\s\up8(→)),即meq \(AB,\s\up8(→))+eq \(AD,\s\up8(→))=λ(eq \f(3,4)eq \(AD,\s\up8(→))+eq \f(1,4)eq \(AB,\s\up8(→))),
又eq \(AB,\s\up8(→))与eq \(AD,\s\up8(→))不共线,所以eq \b\lc\{(\a\vs4\al\c1(m=\f(1,4)λ,,1=\f(3,4)λ,))解得eq \b\lc\{(\a\vs4\al\c1(m=\f(1,3),,λ=\f(4,3),))故实数m=eq \f(1,3).]
4.在等腰梯形ABCD中, eq \(AB,\s\up8(→))=2eq \(DC,\s\up8(→)),点E是线段BC的中点,若eq \(AE,\s\up8(→))=λeq \(AB,\s\up8(→))+μeq \(AD,\s\up8(→)),则λ=________,μ=________.
eq \f(3,4) eq \f(1,2).
解析:[取AB的中点F,连接CF,则由题可得CF∥AD,且CF=AD.
∵eq \(AE,\s\up8(→))=eq \(AB,\s\up8(→))+eq \(BE,\s\up8(→))=eq \(AB,\s\up8(→))+eq \f(1,2)eq \(BC,\s\up8(→))=eq \(AB,\s\up8(→))+eq \f(1,2)(eq \(FC,\s\up8(→))﹣eq \(FB,\s\up8(→)))=eq \(AB,\s\up8(→))+eq \f(1,2)(eq \(AD,\s\up8(→))﹣eq \f(1,2)eq \(AB,\s\up8(→)))
=eq \f(3,4)eq \(AB,\s\up8(→))+eq \f(1,2)eq \(AD,\s\up8(→)),∴λ=eq \f(3,4),μ=eq \f(1,2).]
1.O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足:eq \(OP,\s\up8(→))=eq \(OA,\s\up8(→))+λ(eq \f(\(AB,\s\up8(→)),|\(AB,\s\up8(→))|)+eq \f(\(AC,\s\up8(→)),|\(AC,\s\up8(→))|)),λ∈解析:[0,+∞),则P的轨迹一定通过△ABC的( )
A.外心 B.内心
C.重心 D.垂心
B
解析:[作∠BAC的平分线AD.因为eq \(OP,\s\up8(→))=eq \(OA,\s\up8(→))+λ(eq \f(\(AB,\s\up8(→)),|\(AB,\s\up8(→))|)+eq \f(\(AC,\s\up8(→)),|\(AC,\s\up8(→))|)),
所以eq \(AP,\s\up8(→))=λ(eq \f(\(AB,\s\up8(→)),|\(AB,\s\up8(→))|)+eq \f(\(AC,\s\up8(→)),|\(AC,\s\up8(→))|))=λ′·eq \f(\(AD,\s\up8(→)),|\(AD,\s\up8(→))|)(λ′∈解析:[0,+∞),所以eq \(AP,\s\up8(→))=eq \f(λ′,|\(AD,\s\up8(→))|)·eq \(AD,\s\up8(→)),
所以eq \(AP,\s\up8(→))∥eq \(AD,\s\up8(→)),所以P的轨迹一定通过△ABC的内心,故选B.]
2.如图,直角梯形ABCD中,AB∥CD,∠DAB=90°,AD=AB=4,CD=1,动点P在边BC上,且满足eq \(AP,\s\up8(→))=meq \(AB,\s\up8(→))+neq \(AD,\s\up8(→))(m,n均为正实数),则eq \f(1,m)+eq \f(1,n)的最小值为________.
eq \f(7+4\r(3),4).
解析:[eq \(AC,\s\up8(→))=eq \(AD,\s\up8(→))+eq \(DC,\s\up8(→))=eq \f(1,4)eq \(AB,\s\up8(→))+eq \(AD,\s\up8(→)),eq \(BC,\s\up8(→))=eq \(AC,\s\up8(→))﹣eq \(AB,\s\up8(→))=﹣eq \f(3,4)eq \(AB,\s\up8(→))+eq \(AD,\s\up8(→)),
设eq \(BP,\s\up8(→))=λeq \(BC,\s\up8(→))=﹣eq \f(3λ,4)eq \(AB,\s\up8(→))+λeq \(AD,\s\up8(→))(0≤λ≤1),则eq \(AP,\s\up8(→))=eq \(AB,\s\up8(→))+eq \(BP,\s\up8(→))=(1﹣eq \f(3λ,4))eq \(AB,\s\up8(→))+λeq \(AD,\s\up8(→)).
因为eq \(AP,\s\up8(→))=meq \(AB,\s\up8(→))+neq \(AD,\s\up8(→)),所以m=1﹣eq \f(3λ,4),n=λ.
所以eq \f(1,m)+eq \f(1,n)=eq \f(4,4-3λ)+eq \f(1,λ)=eq \f(λ+4,-3λ2+4λ)=eq \f(1,28-\b\lc\[\rc\](\a\vs4\al\c1(3(λ+4)+\f(64,λ+4))))
≥eq \f(1,28-2\r(3×64))=eq \f(7+4\r(3),4).当且仅当3(λ+4)=eq \f(64,λ+4),即(λ+4)2=eq \f(64,3)时取等号.]
2.设D为△ABC所在平面内一点,eq \(AD,\s\up8(→))=﹣eq \f(1,3)eq \(AB,\s\up8(→))+eq \f(4,3)eq \(AC,\s\up8(→)),若eq \(BC,\s\up8(→))=λeq \(DC,\s\up8(→))(λ∈R),则λ=( )
A.2 B.3 C.﹣2 D.﹣3
答案为:D.解析:由eq \(BC,\s\up8(→))=λeq \(DC,\s\up8(→))可知eq \(AC,\s\up8(→))﹣eq \(AB,\s\up8(→))=λ(eq \(AC,\s\up8(→))﹣eq \(AD,\s\up8(→))),∴eq \(AD,\s\up8(→))=(1-eq \f(1,λ))eq \(AC,\s\up8(→))+eq \f(1,λ)eq \(AB,\s\up8(→)),
又eq \(AD,\s\up8(→))=﹣eq \f(1,3)eq \(AB,\s\up8(→))+eq \f(4,3)eq \(AC,\s\up8(→)),∴eq \b\lc\{(\a\vs4\al\c1(\f(1,λ)=-\f(1,3),,1-\f(1,λ)=\f(4,3).))解得λ=﹣3,故选D.]
3.在△ABC中,点M,N满足eq \(AM,\s\up8(→))=2eq \(MC,\s\up8(→)),eq \(BN,\s\up8(→))=eq \(NC,\s\up8(→)).若eq \(MN,\s\up8(→))=xeq \(AB,\s\up8(→))+yeq \(AC,\s\up8(→)),则x=________;y=________.
eq \f(1,2) ﹣eq \f(1,6).
解析:[eq \(MN,\s\up8(→))=eq \(MC,\s\up8(→))+eq \(CN,\s\up8(→))=eq \f(1,3)eq \(AC,\s\up8(→))+eq \f(1,2)eq \(CB,\s\up8(→))=eq \f(1,3)eq \(AC,\s\up8(→))+eq \f(1,2)(eq \(AB,\s\up8(→))﹣eq \(AC,\s\up8(→)))=eq \f(1,2)eq \(AB,\s\up8(→))﹣eq \f(1,6)eq \(AC,\s\up8(→))
=xeq \(AB,\s\up8(→))+yeq \(AC,\s\up8(→)),∴x=eq \f(1,2),y=﹣eq \f(1,6).]
考点3 共线向量定理的应用
共线向量定理的3个应用
设两个非零向量a与b不共线,
(1)若eq \(AB,\s\up8(→))=a+b,eq \(BC,\s\up8(→))=2a+8b,eq \(CD,\s\up8(→))=3(a﹣b),求证:A,B,D三点共线;
(2)试确定实数k,使ka+b和a+kb共线.
解析:[解] (1)证明:∵eq \(AB,\s\up8(→))=a+b,eq \(BC,\s\up8(→))=2a+8b,eq \(CD,\s\up8(→))=3(a﹣b),
∴eq \(BD,\s\up8(→))=eq \(BC,\s\up8(→))+eq \(CD,\s\up8(→))=2a+8b+3(a﹣b)=2a+8b+3a﹣3b=5(a+b)=5eq \(AB,\s\up8(→)).
∴eq \(AB,\s\up8(→)),eq \(BD,\s\up8(→))共线,
又∵它们有公共点B,∴A,B,D三点共线.
(2)∵ka+b和a+kb共线,
∴存在实数λ,使ka+b=λ(a+kb),
即ka+b=λa+λkb,∴(k﹣λ)a=(λk﹣1)b.
∵a,b是两个不共线的非零向量,∴k﹣λ=λk﹣1=0,
∴k2﹣1=0,∴k=±1.
解析:[母题探究]若将本例(1)中“eq \(BC,\s\up8(→))=2a+8b”改为“eq \(BC,\s\up8(→))=a+mb”,则m为何值时,A,B,D三点共线?
解析:[解] eq \(BC,\s\up8(→))+eq \(CD,\s\up8(→))=(a+mb)+3(a﹣b)=4a+(m﹣3)b,
即eq \(BD,\s\up8(→))=4a+(m﹣3)b.
若A,B,D三点共线,则存在实数λ,使eq \(BD,\s\up8(→))=λeq \(AB,\s\up8(→)).
即4a+(m﹣3)b=λ(a+b).
∴eq \b\lc\{(\a\vs4\al\c1(4=λ,,m-3=λ,))解得m=7.
故当m=7时,A,B,D三点共线.
利用向量共线定理解决问题应注意2点
(1)向量共线的充要条件中,当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,注意待定系数法和方程思想的运用.
(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线.
1.在四边形ABCD中,eq \(AB,\s\up8(→))=a+2b,eq \(BC,\s\up8(→))=﹣4a﹣b,eq \(CD,\s\up8(→))=﹣5a﹣3b,则四边形ABCD的形状是( )
A.矩形 B.平行四边形
C.梯形 D.以上都不对
答案为:C.解析:由已知,得eq \(AD,\s\up8(→))=eq \(AB,\s\up8(→))+eq \(BC,\s\up8(→))+eq \(CD,\s\up8(→))=﹣8a﹣2b=2(﹣4a﹣b)=2eq \(BC,\s\up8(→)),故eq \(AD,\s\up8(→))∥eq \(BC,\s\up8(→)).又因为eq \(AB,\s\up8(→))与eq \(CD,\s\up8(→))不平行,所以四边形ABCD是梯形.]
2.已知向量e1≠0,λ∈R,a=e1+λe2,b=2e1,若向量a与向量b共线,则( )
A.λ=0 B.e2=0
C.e1∥e2 D.e1∥e2或λ=0
答案为:D.解析:因为向量e1≠0,λ∈R,a=e1+λe2,b=2e1,又因为向量a和b共线,存在实数k,使得a=kb,所以e1+λe2=2ke1,所以λe2=(2k﹣1)e1,所以e1∥e2或λ=0.]
3.已知O为△ABC内一点,且eq \(AO,\s\up8(→))=eq \f(1,2)(eq \(OB,\s\up8(→))+eq \(OC,\s\up8(→))),eq \(AD,\s\up8(→))=teq \(AC,\s\up8(→)),若B,O,D三点共线,则t=( )
A.eq \f(1,4) B.eq \f(1,3) C.eq \f(1,2) D.eq \f(2,3)
答案为:B.解析:设E是BC边的中点,则eq \f(1,2)(eq \(OB,\s\up8(→))+eq \(OC,\s\up8(→)))=eq \(OE,\s\up8(→)),由题意得eq \(AO,\s\up8(→))=eq \(OE,\s\up8(→)),所以eq \(AO,\s\up8(→))=eq \f(1,2)eq \(AE,\s\up8(→))=eq \f(1,4)(eq \(AB,\s\up8(→))+eq \(AC,\s\up8(→)))=eq \f(1,4)eq \(AB,\s\up8(→))+eq \f(1,4t)eq \(AD,\s\up8(→)),又因为B,O,D三点共线,所以eq \f(1,4)+eq \f(1,4t)=1,解得t=eq \f(1,3),故选B.]
向量运算
定义
法则(或几何意义)
运算律
加法
求两个向量和的运算
三角形法则
平行四边形法则
(1)交换律:
a+b=b+a;
(2)结合律:
(a+b)+c=a+(b+c)
减法
求a与b的相反向量﹣b的和的运算叫做a与b的差
三角形法则
a﹣b=a+(﹣b)
数乘
求实数λ与向量a的积的运算
(1)|λa|=|λ||a|;
(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0
λ(μ a)=(λμ)_a;
(λ+μ)a=λa+μ_a;
λ(a+b)=λa+λb
证明向量共线
对于向量a,b,若存在实数λ,使a=λb(b≠0),则a与b共线
证明三点共线
若存在实数λ,使eq \(AB,\s\up8(→))=λeq \(AC,\s\up8(→)),则A,B,C三点共线
求参数的值
利用共线向量定理及向量相等的条件列方程(组)求参数的值
新高考数学一轮复习讲义+分层练习 10.4《古典概型与几何概型》教案 (2份打包,原卷版+教师版): 这是一份新高考数学一轮复习讲义+分层练习 10.4《古典概型与几何概型》教案 (2份打包,原卷版+教师版),文件包含新高考数学一轮复习讲义+分层练习104《古典概型与几何概型》教案原卷版doc、新高考数学一轮复习讲义+分层练习104《古典概型与几何概型》教案原卷版pdf、新高考数学一轮复习讲义+分层练习104《古典概型与几何概型》教案教师版doc、新高考数学一轮复习讲义+分层练习104《古典概型与几何概型》教案教师版pdf等4份教案配套教学资源,其中教案共72页, 欢迎下载使用。
新高考数学一轮复习讲义+分层练习 7.5《空间向量的运算及应用》教案 (2份打包,原卷版+教师版): 这是一份新高考数学一轮复习讲义+分层练习 7.5《空间向量的运算及应用》教案 (2份打包,原卷版+教师版),文件包含新高考数学一轮复习讲义+分层练习75《空间向量的运算及应用》教案原卷版doc、新高考数学一轮复习讲义+分层练习75《空间向量的运算及应用》教案原卷版pdf、新高考数学一轮复习讲义+分层练习75《空间向量的运算及应用》教案教师版doc、新高考数学一轮复习讲义+分层练习75《空间向量的运算及应用》教案教师版pdf等4份教案配套教学资源,其中教案共50页, 欢迎下载使用。
新高考数学一轮复习讲义+分层练习 3.1《导数的概念及运算》教案 (2份打包,原卷版+教师版): 这是一份新高考数学一轮复习讲义+分层练习 3.1《导数的概念及运算》教案 (2份打包,原卷版+教师版),文件包含新高考数学一轮复习讲义+分层练习31《导数的概念及运算》教案原卷版doc、新高考数学一轮复习讲义+分层练习31《导数的概念及运算》教案原卷版pdf、新高考数学一轮复习讲义+分层练习31《导数的概念及运算》教案教师版doc、新高考数学一轮复习讲义+分层练习31《导数的概念及运算》教案教师版pdf等4份教案配套教学资源,其中教案共38页, 欢迎下载使用。