终身会员
搜索
    上传资料 赚现金

    高一上学期数学期末考模拟测试卷02-2023-2024学年高一数学人教A版2019必修第一册

    立即下载
    加入资料篮
    高一上学期数学期末考模拟测试卷02-2023-2024学年高一数学人教A版2019必修第一册第1页
    高一上学期数学期末考模拟测试卷02-2023-2024学年高一数学人教A版2019必修第一册第2页
    高一上学期数学期末考模拟测试卷02-2023-2024学年高一数学人教A版2019必修第一册第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高一上学期数学期末考模拟测试卷02-2023-2024学年高一数学人教A版2019必修第一册

    展开

    这是一份高一上学期数学期末考模拟测试卷02-2023-2024学年高一数学人教A版2019必修第一册,共19页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。



    高一上学期数学期末考模拟测试卷02(必修一)
    一、单选题
    1.(2023上·广东深圳·高三深圳市宝安中学(集团)校考阶段练习)已知,,那么( )
    A.B.C.D.
    2.(2023上·广东汕头·高一汕头市潮阳林百欣中学校考阶段练习)下列函数中,既是奇函数又是减函数的是( )
    A.B.C.D.
    3.(2023上·广东江门·高一江门市新会梁启超纪念中学(江门市新会实验中学、江门市新会教师进修学校)校考期中)函数,若,则a的值为( )
    A.B.C.1D.5
    4.(2023上·广东深圳·高二校联考阶段练习)已知,若,则( )
    A.B.C.D.
    5.(广东省梅州市2022-2023学年高一上学期期末考试数学试题)已知函数,则的零点存在于下列哪个区间内( )
    A.B.C.D.
    6.(2022上·广东珠海·高一校考期末)若,则的值为( )
    A.B.C.D.
    7.(2023下·广东佛山·高一佛山市顺德区乐从中学校考阶段练习)将函数的图象向右平移个周期后,所得图象对应的函数为( )
    A.B.
    C.D.
    8.(2023上·广东广州·高一广东实验中学校考期末)已知函数, 若, 则实数的取值范围是( )
    A.B.C.D.
    二、多选题
    9.(2023上·广东梅州·高一统考期末)设,,则下列结论正确的是( )
    A.B.C.D.
    10.(2023上·湖北襄阳·高一枣阳一中校考阶段练习)已知正数满足,则下列选项正确的是( )
    A.的最小值是2B.的最大值是1
    C.的最小值是4D.的最大值是
    11.(2023上·广东佛山·高一佛山市顺德区乐从中学校考阶段练习)已知函数,下列说法正确的是( )
    A.函数是奇函数
    B.
    C.
    D.函数的值域为
    12.(2023上·广东广州·高一广东实验中学校考期末)已知定义域为R的奇函数,当时,下列说法中正确的是( )
    A.当时,恒有
    B.若当时,的最小值为,则m的取值范围为
    C.不存在实数k,使函数有5个不相等的零点
    D.若关于x的方程所有实数根之和为0,则
    三、填空题
    13.(2023·高三课时练习)已知,则 .
    14.(2023下·广东揭阳·高一校考阶段练习)已知扇形的半径是1,周长为π,则扇形的面积是 .
    15.(2023上·广东广州·高一广东实验中学校考期末)幂函数在区间上单调递减,则实数m的值为 .
    16.(2023上·广东梅州·高一统考期末)中国茶文化博大精深,茶水的口感与茶叶类型和水的温度有关,经验表明,某种绿茶用80℃的开水泡制,再等茶水温度降至35℃时饮用,可以产生最佳口感.若茶水原来的温度是℃,经过一定时间tmin后的温度T℃,则可由公式求得,其中表示室温,h是一个随着物体与空气的接触状况而定的正常数,现有一杯80℃的绿茶放在室温为20℃的房间中,已知茶温降到50℃需要10min.那么在20℃室温下,用80℃的开水刚泡好的茶水大约需要放置时间 min,才能达到最佳饮用口感.
    四、解答题
    17.(2023下·广东佛山·高一罗定邦中学校联考阶段练习)已知函数.
    (1)求;
    (2)若,求的值.
    18.(2022上·江苏苏州·高一校联考阶段练习)已知不等式的解集为或(其中).
    (1)求实数,的值;
    (2)解关于的不等式.
    19.(2023上·广东广州·高一广东实验中学校考期末)已知函数(,且).
    (1)若函数的图象过点,求b的值;
    (2)若函数在区间上的最大值比最小值大,求a的值.
    20.(2023上·广东广州·高一广东实验中学校考期末)已知函数为偶函数.
    (1)求实数的值;
    (2)解关于的不等式;
    (3)设,若函数与图象有个公共点,求实数的取值范围.
    21.(2023上·广东梅州·高一统考期末)已知函数(且)为定义在R上的奇函数,且.
    (1)求函数的解析式;
    (2)若实数t满足,求实数t的取值范围.
    22.(2023上·广东梅州·高一统考期末)洗衣服是人们日常生活中的一件极普通但又不可或缺的事.对于一件用洗衣粉已搓洗好而即将进入漂洗阶段的衣服,如果用定量的清水来漂洗它,问对清水分配使用的不同,对最终漂洗出来的衣服的干净程度有影响吗?为此,我们研究漂洗一块毛巾的情形,提出以下假设:①漂洗前和每一次漂洗拧干后,毛巾上总残留清水b克;②每一次漂洗时,毛巾上残留的污物会均匀地溶解在漂洗和残留的清水里,污物则按浓度比例(注:浓度比例)随着拧走的水而去除,剩余污物留在残留的清水中;③符号假设:用来漂洗的清水总质量为M克,漂洗之前毛巾上的初始污物质量为克,现在,有以下两种方案:方案一:一次性用完全部的清水去漂洗毛巾;方案二:把清水均匀地分两次,对毛巾进行漂洗.
    (1)如果采用方案一,求漂洗拧干后的毛巾中污物剩余质量;
    (2)如果采用方案二,设第一次漂洗之后毛巾上残留的污物质量为克,第二次漂洗之后毛巾上残留的污物质量为克,求两次漂洗后的毛巾中污物剩余质量;并对比哪种方案的效果好.
    一、单选题
    1.(2023上·广东深圳·高三深圳市宝安中学(集团)校考阶段练习)已知,,那么( )
    A.B.C.D.
    【答案】B
    【分析】根据交集运算求解.
    【详解】由题意可得:.
    故选:B.
    2.(2023上·广东汕头·高一汕头市潮阳林百欣中学校考阶段练习)下列函数中,既是奇函数又是减函数的是( )
    A.B.C.D.
    【答案】D
    【分析】根据基本初等函数的单调即可排除ABC,结合奇偶性的判定即可求解D.
    【详解】对于A,为单调递增函数,故不符合题意,
    对于B,为上的单调递增函数,故不符合题意,
    对于C,为内单调递减函数,由于定义域不关于原点对称,故不是奇函数,故不符合题意,
    对于D,为上的单调递减函数,且,故为奇函数,D正确,
    故选:D
    3.(2023上·广东江门·高一江门市新会梁启超纪念中学(江门市新会实验中学、江门市新会教师进修学校)校考期中)函数,若,则a的值为( )
    A.B.C.1D.5
    【答案】A
    【分析】分和代入函数解析式求出即可.
    【详解】由已知可得,当时,代入已知函数可得,
    解得或(舍去),所以;
    当,代入已知函数可得,
    解得或(舍去),所以;
    综上所述,a的值为.
    故选:A
    4.(2023上·广东深圳·高二校联考阶段练习)已知,若,则( )
    A.B.C.D.
    【答案】C
    【分析】根据对数函数的单调性求得正确答案.
    【详解】当时,,单调递增,
    ,,
    所以,即.
    故选:C
    5.(广东省梅州市2022-2023学年高一上学期期末考试数学试题)已知函数,则的零点存在于下列哪个区间内( )
    A.B.C.D.
    【答案】B
    【分析】利用零点存在性定理,结合函数的单调性即可求解.
    【详解】∵,
    ∴,
    ∴,
    又与在上单调递增,所以在上单调递增,
    ∴函数的零点所在的一个区间为.
    故选:B.
    6.(2022上·广东珠海·高一校考期末)若,则的值为( )
    A.B.C.D.
    【答案】D
    【分析】根据,结合三角函数诱导公式计算可得.
    【详解】因为,
    所以.
    故选:.
    7.(2023下·广东佛山·高一佛山市顺德区乐从中学校考阶段练习)将函数的图象向右平移个周期后,所得图象对应的函数为( )
    A.B.
    C.D.
    【答案】D
    【分析】根据周期公式得个周期为,进而根据平移的法则即可求解.
    【详解】的周期为,所以个周期为,
    故将向右平移个单位得,
    故选:D
    8.(2023上·广东广州·高一广东实验中学校考期末)已知函数, 若, 则实数的取值范围是( )
    A.B.C.D.
    【答案】B
    【解析】由函数的解析式,求得函数的定义域,再根据函数的奇偶性和复合函数的单调性,得出函数为奇函数且为单调递减函数,再根据函数的性质,列出不等式组,即可求解.
    【详解】由题意,函数有意义,则满足,即,解得,
    又由,所以函数为奇函数,
    令,可得函数为单调递减函数,
    根据复合函数的单调性,可得函数为定义域上的单调递减函数,
    因为,即,
    则满足,解得.
    故选:B.
    【点睛】求解函数不等式的方法:
    1、解函数不等式的依据是函数的单调性的定义,
    具体步骤:①将函数不等式转化为的形式;②根据函数的单调性去掉对应法则“”转化为形如:“”或“”的常规不等式,从而得解.
    2、利用函数的图象研究不等式,当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解.
    二、多选题
    9.(2023上·广东梅州·高一统考期末)设,,则下列结论正确的是( )
    A.B.C.D.
    【答案】AC
    【分析】根据对数的运算法则及性质逐一判断各选项即可.
    【详解】已知,,
    对于A,,故A正确;
    对于B, ,故B错误;
    对于C, ,故C正确;
    对于D, ,故D错误;
    故选:AC.
    10.(2023上·湖北襄阳·高一枣阳一中校考阶段练习)已知正数满足,则下列选项正确的是( )
    A.的最小值是2B.的最大值是1
    C.的最小值是4D.的最大值是
    【答案】ABD
    【分析】根据题中条件及基本不等式,逐项分析即可.
    【详解】因为,所以,


    当且仅当时,等号成立,
    即的最小值是2,故A正确;
    因为,所以,
    当且仅当时,等号成立,
    即的最大值是1,故B正确;

    当且仅当时,等号成立,
    即的最小值是,故C错误;
    因为,
    当且仅当,即时等号成立,
    即的最大值是,故D正确,
    故选:ABD.
    11.(2023上·广东佛山·高一佛山市顺德区乐从中学校考阶段练习)已知函数,下列说法正确的是( )
    A.函数是奇函数
    B.
    C.
    D.函数的值域为
    【答案】BCD
    【分析】求出函数的定义域,再根据奇偶性的定义即可判断A;求出即可判断B;结合B选项即可判断C;分离常数,再结合反比例函数的性质即可判断D.
    【详解】对于A,由,得,所以,
    所以函数的定义域为,
    又,所以函数是偶函数,故A错误;
    对于B,,故B正确;
    对于C,由B选项可得,
    所以,故C正确;
    对于D,,
    由且,得且,
    所以,所以,
    所以函数的值域为,故D正确.
    故选:BCD.
    12.(2023上·广东广州·高一广东实验中学校考期末)已知定义域为R的奇函数,当时,下列说法中正确的是( )
    A.当时,恒有
    B.若当时,的最小值为,则m的取值范围为
    C.不存在实数k,使函数有5个不相等的零点
    D.若关于x的方程所有实数根之和为0,则
    【答案】BC
    【分析】根据函数的奇偶性及时的解析式作出函数的图象,结合图象可判断AB选项,联立与可判断相切时切点横坐标为1,当,时最多一个交点,可判断C,根据函数奇偶性与对称性判断D.
    【详解】当时,且为R上的奇函数,
    作函数f(x)的图象如图:

    对于A,当时,函数f(x)不是单调递减函数,则f(x1)>f(x2)不成立,故A不正确;
    对于B,令,解得,由图象可知,当时,的最小值为,则,故B正确;
    对于C,联立,得,
    △=(k+1)2﹣4=k2+2k﹣3=0,存在,使得△=0,此时,可知最多有3个不同的交点,
    ∴不存在实数k,使关于x的方程f(x)=kx有5个不相等的实数根,故C正确;
    对于D,由 可得或,
    ∵函数f(x)是奇函数,若关于x的两个方程与所有根的和为0,
    ∴函数的根与根关于原点对称,则,
    但x>0时,方程有2个根,分别为,两根之和为,
    若关于x的两个方程与所有根的和为0,
    若的根为,此时,此时仅有一解,符合题意 ,故D错误.
    故选:BC
    【点睛】关键点点睛:利用奇函数的对称性得出函数的图象是解决本题的关键所在,结合函数的单调性,函数值的变换,函数图象的交点,利用数形结合解决问题,属于难题.
    三、填空题
    13.(2023·高三课时练习)已知,则 .
    【答案】3
    【分析】将齐次式弦化切即可求解.
    【详解】因为,
    所以,
    故答案为:3.
    14.(2023下·广东揭阳·高一校考阶段练习)已知扇形的半径是1,周长为π,则扇形的面积是 .
    【答案】
    【分析】设扇形的圆心角为,利用扇形的弧长公式,求得,再结合面积公式,即可求解.
    【详解】设扇形的圆心角为,
    由扇形的周长为,即,解得,
    所以扇形的面积为.
    故答案为:.
    【点睛】本题主要考查了扇形的弧长公式和面积公式的应用,其中解答中熟记扇形的弧长公式和面积公式,准确运算是解答的关键,着重考查运算能力.
    15.(2023上·广东广州·高一广东实验中学校考期末)幂函数在区间上单调递减,则实数m的值为 .
    【答案】
    【分析】利用幂函数的定义,幂函数的单调性列式计算作答.
    【详解】因函数是幂函数,则,解得m=1或m=-3,
    又函数在上单调递减,则,
    所以实数m的值为-3.
    故答案为:-3
    16.(2023上·广东梅州·高一统考期末)中国茶文化博大精深,茶水的口感与茶叶类型和水的温度有关,经验表明,某种绿茶用80℃的开水泡制,再等茶水温度降至35℃时饮用,可以产生最佳口感.若茶水原来的温度是℃,经过一定时间tmin后的温度T℃,则可由公式求得,其中表示室温,h是一个随着物体与空气的接触状况而定的正常数,现有一杯80℃的绿茶放在室温为20℃的房间中,已知茶温降到50℃需要10min.那么在20℃室温下,用80℃的开水刚泡好的茶水大约需要放置时间 min,才能达到最佳饮用口感.
    【答案】20
    【分析】由80°C的绿茶放在室温为20℃的房间中茶温降到50℃需要10min代入公式得;茶温降到35℃需要min代入公式得,观察与为平方关系,可求得.
    【详解】一杯80°C的绿茶放在室温为20℃的房间中,如果茶温降到50℃需要10min,
    那么:,所以
    一杯80°C的绿茶放在室温为20℃的房间中,如果茶温降到35℃需要min,
    那么:,所以,
    所以,所以,
    故答案为:20
    四、解答题
    17.(2023下·广东佛山·高一罗定邦中学校联考阶段练习)已知函数.
    (1)求;
    (2)若,求的值.
    【答案】(1)
    (2)
    【分析】(1)利用诱导公式化简计算即可;
    (2)根据二倍角的正弦公式结合商数关系化弦为切即可得解.
    【详解】(1)原式


    (2)因为,即,
    所以.
    18.(2022上·江苏苏州·高一校联考阶段练习)已知不等式的解集为或(其中).
    (1)求实数,的值;
    (2)解关于的不等式.
    【答案】(1)
    (2)
    【分析】(1)根据不等式与对应方程的根的关系求解;(2)分式不等式转化为一元二次不等式求解即可.
    【详解】(1)由题意可得的解集为或,
    则且1和为方程的两个根.
    则,解得.
    (2)不等式化为,
    转化为,即
    所以,解集为.
    19.(2023上·广东广州·高一广东实验中学校考期末)已知函数(,且).
    (1)若函数的图象过点,求b的值;
    (2)若函数在区间上的最大值比最小值大,求a的值.
    【答案】(1)1
    (2)或
    【分析】(1)将点坐标代入求出b的值;(2)分与两种情况,根据函数单调性表达出最大值和最小值,列出方程,求解a的值.
    【详解】(1),解得.
    (2)当时,在区间上单调递减,此时,,所以,解得:或0(舍去);
    当时,在区间上单调递增,此时,,所以,解得:或0(舍去).
    综上:或
    20.(2023上·广东广州·高一广东实验中学校考期末)已知函数为偶函数.
    (1)求实数的值;
    (2)解关于的不等式;
    (3)设,若函数与图象有个公共点,求实数的取值范围.
    【答案】(1)
    (2)
    (3)
    【分析】(1)根据偶函数的定义及性质直接化简求值;
    (2)判断时函数的单调性,根据奇偶性可得函数在各区间内的单调性,解不等式即可;
    (3)由函数与图象有个公共点,可得有两个实数根,再利用换元法转化为二次方程有两个根,利用判别式求参数范围.
    【详解】(1)函数的定义或为,
    函数为偶函数.
    ,即 ,


    (2),
    当时,,单调递增,
    在上单调递增,
    又函数为偶函数,所以函数在上单调递增,在上单调递减;


    解得或,
    所以所求不等式的解集为 ;
    (3)函数与图象有个公共点,

    即,,
    设,则,即,
    又在上单调递增,
    所以方程有两个不等的正根;

    解得,即的取值范围为.
    21.(2023上·广东梅州·高一统考期末)已知函数(且)为定义在R上的奇函数,且.
    (1)求函数的解析式;
    (2)若实数t满足,求实数t的取值范围.
    【答案】(1)
    (2)
    【分析】(1)利用函数的奇偶性求解析式即可;
    (2)利用函数的单调性解不等式,求参数的范围.
    【详解】(1)函数为定义在R上的奇函数,
    所以,解得,
    又,解得,
    所以函数的解析式为:.
    经检验,函数满足题设要求.
    (2)因为,
    所以,
    因为和在R上单调递减,
    所以在R上单调递减,
    所以,解得:.
    所以实数t的取值范围.为:.
    22.(2023上·广东梅州·高一统考期末)洗衣服是人们日常生活中的一件极普通但又不可或缺的事.对于一件用洗衣粉已搓洗好而即将进入漂洗阶段的衣服,如果用定量的清水来漂洗它,问对清水分配使用的不同,对最终漂洗出来的衣服的干净程度有影响吗?为此,我们研究漂洗一块毛巾的情形,提出以下假设:①漂洗前和每一次漂洗拧干后,毛巾上总残留清水b克;②每一次漂洗时,毛巾上残留的污物会均匀地溶解在漂洗和残留的清水里,污物则按浓度比例(注:浓度比例)随着拧走的水而去除,剩余污物留在残留的清水中;③符号假设:用来漂洗的清水总质量为M克,漂洗之前毛巾上的初始污物质量为克,现在,有以下两种方案:方案一:一次性用完全部的清水去漂洗毛巾;方案二:把清水均匀地分两次,对毛巾进行漂洗.
    (1)如果采用方案一,求漂洗拧干后的毛巾中污物剩余质量;
    (2)如果采用方案二,设第一次漂洗之后毛巾上残留的污物质量为克,第二次漂洗之后毛巾上残留的污物质量为克,求两次漂洗后的毛巾中污物剩余质量;并对比哪种方案的效果好.
    【答案】(1)
    (2),,方案二的效果更好
    【分析】(1)依照方案一漂洗时加入清水M克,此时克污物均匀地溶解在克清水里,取出毛巾拧“干”后,毛巾上残留的污物量均匀地溶解在毛巾上残留的清水b克里.得出,求出.
    (2)方案二,第一次漂洗,与问题一相同,有:,求出,同理得出,比较的大小关系即可得出结果.
    【详解】(1)由假设知,第一次漂洗前,毛巾上有污物克,残留的清水b克.依照方案一漂洗时加入清水M克,此时克污物均匀地溶解在克清水里,取出毛巾拧“干”后,毛巾上残留的污物量均匀地溶解在毛巾上残留的清水b克里.
    由于毛巾拧干前后污物的浓度相等,故拧干后毛巾上残留的污物量与毛巾上残留的清水量b之比,等于拧干前毛巾上残留的污物量与清水量之比,
    即:,从而.
    (2)先采用方案二,第一次漂洗,与问题一相同,有:
    即:第一次漂洗之后剩余污物量,
    同理,在第二次漂洗拧干前,毛巾上残留的污物量与清水量之比,等于在拧干之后毛巾上残留的污物量与毛巾上残留的清水量b之比,即,
    也即,然而.
    因此,即说明方案二的效果更好.

    相关试卷

    期末仿真模拟试卷02-2023-2024学年高一数学上学期期末仿真模拟卷(人教A版(2019)必修第一册)(新高考地区专用)(解析版):

    这是一份期末仿真模拟试卷02-2023-2024学年高一数学上学期期末仿真模拟卷(人教A版(2019)必修第一册)(新高考地区专用)(解析版),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    高一上学期数学期末考模拟测试卷01-2023-2024学年高一数学人教A版2019必修第一册:

    这是一份高一上学期数学期末考模拟测试卷01-2023-2024学年高一数学人教A版2019必修第一册,共21页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    高一上学期期末模拟测试卷02-2023-2024学年高一数学上学期高频考点题型归纳与满分必练(人教A版2019必修第一册):

    这是一份高一上学期期末模拟测试卷02-2023-2024学年高一数学上学期高频考点题型归纳与满分必练(人教A版2019必修第一册),共21页。试卷主要包含了本试卷分第Ⅰ卷两部分,测试范围,函数的零点的个数为,已知函数,下列结论错误的是,若,则下列命题正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map