|试卷下载
终身会员
搜索
    上传资料 赚现金
    第八章 解析几何(直线与圆、圆锥曲线)-备战2024年高考数学重难点专题测试模拟卷(新高考专用)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      第八章 解析几何(直线与圆、圆锥曲线)-备战高考数学专题测试模拟卷(新高考专用)(解析卷).docx
    • 练习
      第八章 解析几何(直线与圆、圆锥曲线)-备战高考数学专题测试模拟卷(新高考专用)(原题卷).docx
    第八章 解析几何(直线与圆、圆锥曲线)-备战2024年高考数学重难点专题测试模拟卷(新高考专用)01
    第八章 解析几何(直线与圆、圆锥曲线)-备战2024年高考数学重难点专题测试模拟卷(新高考专用)02
    第八章 解析几何(直线与圆、圆锥曲线)-备战2024年高考数学重难点专题测试模拟卷(新高考专用)03
    第八章 解析几何(直线与圆、圆锥曲线)-备战2024年高考数学重难点专题测试模拟卷(新高考专用)01
    第八章 解析几何(直线与圆、圆锥曲线)-备战2024年高考数学重难点专题测试模拟卷(新高考专用)02
    第八章 解析几何(直线与圆、圆锥曲线)-备战2024年高考数学重难点专题测试模拟卷(新高考专用)03
    还剩16页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第八章 解析几何(直线与圆、圆锥曲线)-备战2024年高考数学重难点专题测试模拟卷(新高考专用)

    展开
    这是一份第八章 解析几何(直线与圆、圆锥曲线)-备战2024年高考数学重难点专题测试模拟卷(新高考专用),文件包含第八章解析几何直线与圆圆锥曲线-备战高考数学专题测试模拟卷新高考专用解析卷docx、第八章解析几何直线与圆圆锥曲线-备战高考数学专题测试模拟卷新高考专用原题卷docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。

    本试卷22小题,满分150分。考试用时120分钟
    一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
    1.(2023·广东·高三统考模拟预测)设,则“”是“直线与直线平行”的( )
    A.充分不必要条件B.必要不充分条件
    C.充要条件D.既不充分也不必要条件
    2.(2023·南京模拟)已知椭圆的两个焦点分别为F1(0,2), F2(0,-2),P为椭圆上任意一点,若|F1F2|是|PF1|,|PF2|的等差中项,则此椭圆的标准方程为( )
    A.eq \f(x2,64)+eq \f(y2,60)=1 B.eq \f(y2,64)+eq \f(x2,60)=1
    C.eq \f(x2,16)+eq \f(y2,12)=1 D.eq \f(y2,16)+eq \f(x2,12)=1
    3.(2023·广东江门·统考模拟预测)若直线与圆相交于P,Q两点,且(其中O为坐标原点),则b的值为( )
    A.1B.C.D.
    4.(2023·昆明模拟)已知椭圆eq \f(x2,4)+eq \f(y2,3)=1的两个焦点为F1,F2,过F2的直线交椭圆于M,N两点,则△F1MN的周长为( )
    A.2 B.4 C.6 D.8
    5.(2023·湖南长沙·长沙市明德中学校考三模)已知抛物线的焦点为 ,准线为,为上一点,,垂足为,与轴交点为,若,且的面积为,则的方程为( )
    A.B.C.D.
    6.(2023·江苏·统考三模)已知F为椭圆C:的右焦点,P为C上一点,Q为圆M:上一点,则PQ+PF的最大值为( )
    A.3B.6
    C.D.
    7.(2023·浙江·统考二模)已知是圆上一点,是圆的直径,弦的中点为.若点在第一象限,直线、的斜率之和为0,则直线的斜率是( )
    A.B.C.D.
    8.(2022·济南模拟)已知抛物线C:y2=4x,圆F:(x-1)2+y2=1,直线l:y=k(x-1)(k≠0)自上而下顺次与上述两曲线交于M1,M2,M3,M4四点,则下列各式结果为定值的是( )
    A.|M1M2|·|M3M4| B.|FM1|·|FM4|
    C.|M1M3|·|M2M4| D.|FM1|·|M1M2|
    二、多项选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。
    9.(2023·广东肇庆·统考一模)已知圆,直线,则( )
    A.直线过定点
    B.直线与圆可能相离
    C.圆被轴截得的弦长为
    D.圆被直线截得的弦长最短时,直线的方程为
    10.(2023·安徽马鞍山·统考三模)已知抛物线:的焦点为,点为坐标原点,点在抛物线上,直线与抛物线交于点,则( )
    A.的准线方程为B.
    C.直线的斜率为D.
    11..(2023·湖北四地联考)已知椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的左、右焦点分别为F1,F2,长轴长为4,点P(eq \r(2),1)在椭圆C外,点Q在椭圆C上,则( )
    A.椭圆C的离心率的取值范围是
    B.当椭圆C的离心率为eq \f(\r(3),2)时,|QF1|的取值范围是[2-eq \r(3),2+eq \r(3)]
    C.存在点Q使得eq \(QF1,\s\up6(—→))·eq \(QF2,\s\up6(—→))=0
    D.eq \f(1,|QF1|)+eq \f(1,|QF2|)的最小值为1
    12.(2023·湖南邵阳·统考三模)已知双曲线C的左、右焦点分别为,,双曲线具有如下光学性质:从右焦点发出的光线m交双曲线右支于点P,经双曲线反射后,反射光线n的反向延长线过左焦点,如图所示.若双曲线C的一条渐近线的方程为,则下列结论正确的有( )
    A.双曲线C的方程为
    B.若,则
    C.若射线n所在直线的斜率为k,则
    D.当n过点M(8,5)时,光由所经过的路程为10
    三、填空题:本大题共4小题,每小题5分,共20分。
    13.(2023·浙江台州·统考二模)已知椭圆经过点和,则椭圆的离心率为___________.
    14.(2023·浙江·统考二模)已知圆,若被两坐标轴截得的弦长相等,则__________.
    15.(2023·长沙模拟)已知抛物线C:y2=16x,倾斜角为eq \f(π,6)的直线l过焦点F交抛物线于A,B两点,O为坐标原点,则△ABO的面积为________.
    16.(2023·辽宁大连·统考三模)已知为坐标原点,是双曲线的左、右焦点,双曲线上一点满足,且,则双曲线的渐近线方程为__________.点A是双曲线上一定点,过点的动直线与双曲线交于两点,为定值,则当时实数的值为__________.
    四、解答题:本大题共6小题,共70分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。
    17.(2023·衡水模拟)已知椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的左、右焦点分别为F1,F2,离心率为eq \f(\r(2),2),短轴顶点分别为M,N,四边形MF1NF2的面积为32.
    (1)求椭圆C的标准方程;
    (2)直线l交椭圆C于A,B两点,若AB的中点坐标为(-2,1),求直线l的方程.
    18.(2023·重庆·统考三模)已知椭圆的上、下顶点分别为,左顶点为,是面积为的正三角形.
    (1)求椭圆的方程;
    (2)过椭圆外一点的直线交椭圆于两点,已知点与点关于轴对称,点与点关于轴对称,直线与交于点,若是钝角,求的取值范围.
    19.(2023·安徽·校联考三模)如图,椭圆的左、右焦点分别为,,点A,B,C分别为椭圆的左、右顶点和上顶点,O为坐标原点,过点的直线l交椭圆于E,F两点,线段的中点为.点P是上在第一象限内的动点,直线AP与直线BC相交于点Q,直线CP与x轴相交于点M.
    (1)求椭圆的方程;
    (2)设的面积为,的面积为,求的值.
    20.(2023·安徽蚌埠·统考三模)已知,是双曲线的左、右顶点,为双曲线上与,不重合的点.
    (1)设直线,的斜率分别为,,求证:是定值;
    (2)设直线与直线交于点,与轴交于点,点满足,直线与双曲线交于点(与,,不重合).判断直线是否过定点,若直线过定点,求出该定点坐标;若直线不过定点,请说明理由.
    21.(2023·山西运城·统考三模)已知抛物线的焦点为,分别为上两个不同的动点,为坐标原点,当为等边三角形时,.
    (1)求的标准方程;
    (2)抛物线在第一象限的部分是否存在点,使得点满足,且点到直线的距离为2?若存在,求出点的坐标及直线的方程;若不存在,请说明理由.
    22.(2023·山东淄博·统考二模)“工艺折纸”是一种把纸张折成各种不同形状物品的艺术活动,在我国源远流长.某些折纸活动蕴含丰富的数学内容,例如:用一张圆形纸片,按如下步骤折纸(如图)
    步骤1:设圆心是,在圆内异于圆心处取一点,标记为;
    步骤2:把纸片折叠,使圆周正好通过点;
    步骤3:把纸片展开,并留下一道折痕;
    步骤4:不断重复步骤2和3,就能得到越来越多的折痕.则这些折痕所围成的图形是一个椭圆.
    现取半径为的圆形纸片,定点到圆心的距离为,按上述方法折纸.以向量的方向为轴正方向,线段中点为原点建立平面直角坐标系.
    (1)求折痕围成的椭圆的标准方程;
    (2)已知点是圆上任意一点,过点做椭圆的两条切线,切点分别是,求面积的最大值,并确定此时点的坐标.
    注:椭圆:上任意一点处的切线方程是:.
    相关试卷

    第七章 立体几何与空间向量-备战2024年高考数学重难点专题测试模拟卷(新高考专用): 这是一份第七章 立体几何与空间向量-备战2024年高考数学重难点专题测试模拟卷(新高考专用),文件包含第七章立体几何与空间向量-备战高考数学专题测试模拟卷新高考专用解析卷docx、第七章立体几何与空间向量-备战高考数学专题测试模拟卷新高考专用原题卷docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。

    第五章 数列-备战2024年高考数学重难点专题测试模拟卷(新高考专用): 这是一份第五章 数列-备战2024年高考数学重难点专题测试模拟卷(新高考专用),文件包含第五章数列-备战高考数学专题测试模拟卷新高考专用解析卷docx、第五章数列-备战高考数学专题测试模拟卷新高考专用原题卷docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。

    第四章 三角函数-备战2024年高考数学重难点专题测试模拟卷(新高考专用): 这是一份第四章 三角函数-备战2024年高考数学重难点专题测试模拟卷(新高考专用),文件包含第四章三角函数解析卷docx、第四章三角函数原题卷docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        第八章 解析几何(直线与圆、圆锥曲线)-备战2024年高考数学重难点专题测试模拟卷(新高考专用)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map