|试卷下载
终身会员
搜索
    上传资料 赚现金
    2023-2024学年山西省阳泉市郊区阳泉市第一中学校高一上学期11月期中数学试题含答案
    立即下载
    加入资料篮
    2023-2024学年山西省阳泉市郊区阳泉市第一中学校高一上学期11月期中数学试题含答案01
    2023-2024学年山西省阳泉市郊区阳泉市第一中学校高一上学期11月期中数学试题含答案02
    2023-2024学年山西省阳泉市郊区阳泉市第一中学校高一上学期11月期中数学试题含答案03
    还剩11页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023-2024学年山西省阳泉市郊区阳泉市第一中学校高一上学期11月期中数学试题含答案

    展开
    这是一份2023-2024学年山西省阳泉市郊区阳泉市第一中学校高一上学期11月期中数学试题含答案,共14页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    一、单选题
    1.已知集合,且,则( )
    A.B.或C.3D.
    【答案】D
    【分析】利用元素与集合的关系建立方程,求解并验证即得.
    【详解】由集合,得,解得且,
    显然,由,得,而,解得,
    当时,,符合题意,
    所以.
    故选:D
    2.下列函数中既是奇函数,又在上为减函数的是( )
    A.B.C.D.
    【答案】B
    【分析】根据函数解析式直接判断奇偶性及单调性求解.
    【详解】因为定义域不关于原点对称,是非奇非偶函数,
    为偶函数,故排除CD;
    因为在上单调递增,故排除A;
    为奇函数且在上单调递减,故B正确.
    故选:B
    3.已知函数的定义域为,则函数的定义域为( )
    A.B.
    C.D.
    【答案】A
    【分析】由的定义域求出,再令,解得即可.
    【详解】函数的定义域为,即,所以,
    令,解得,所以函数的定义域为.
    故选:A
    4.甲、乙分别解关于x的不等式.甲抄错了常数b,得到解集为;乙抄错了常数c,得到解集为.如果甲、乙两人解不等式的过程都是正确的,那么原不等式解集应为( )
    A.B.C.D.
    【答案】A
    【分析】根据韦达定理求得参数b、c,解不等式即可.
    【详解】由韦达定理得,即,故不等式为,解集为.
    故选:A
    5.若,则函数与的图象大致是( )
    A.B.
    C.D.
    【答案】A
    【分析】根据指数函数和一次函数的图象性质求解.
    【详解】因为,所以是增函数,的图象与轴上的交点为
    故只有A项正确.
    故选:A.
    6.若,,,则的大小关系是( )
    A.B.
    C.D.
    【答案】D
    【分析】由在第一象限内是增函数可得出的大小,由是减函数可得出的大小.
    【详解】因为在第一象限内是增函数,所以
    因为是减函数,所以,所以
    故选:D
    【点睛】本题考查的是利用指数函数和幂函数的单调性比较大小,较简单.
    7.已知为正实数,且,则的最小值为( )
    A.B.C.D.
    【答案】A
    【分析】将等式变形得,所求式子变形为,再由基本不等式求解最值即可.
    【详解】由已知为正实数,且,
    得,且,


    当且仅当,即时,等号成立,
    故的最小值为.
    故选:A.
    8.已知函数,若对,,使得,则的取值范围是( )
    A.B.C.D.
    【答案】A
    【分析】利用基本不等式和函数单调性可得,,,结合存在性问题以及恒成立问题列式求解.
    【详解】因为,则,
    所以,
    当且仅当,即时,等号成立,所以,
    又因为,且,
    可知函数在上单调递增,
    可得,所以,
    即若,则,,
    若对,使得,
    则,解得,
    所以的取值范围是.
    故选:A.
    【点睛】关键点睛:本题求的值域分别利用基本不等式和函数单调性,这是求值域的两种重要且基础方法,应熟练掌握.
    二、多选题
    9.下列结论正确的是( )
    A.B.C.D.
    【答案】AD
    【分析】根据常见数集及元素与集合关系即可作出判断.
    【详解】根据常见数集的表示可知,,,,.
    故选:AD
    10.已知幂函数的图象经过点,则( )
    A.函数为奇函数B.函数在定义域上为减函数
    C.函数的值域为D.当时,
    【答案】AD
    【分析】先求出,再根据幂函数图象性质解决即可.
    【详解】设幂函数为
    将代入解析式得,故,所以,
    定义域为,
    因为,故函数为奇函数,故A正确;
    函数在上都单调递减,但在定义域上不是减函数,故B错误;
    显然的值域为,故C错误;
    当时,,
    即满足,故D正确
    故选:AD
    11.下面命题正确的是( )
    A.“”是“”的充分不必要条件
    B.命题“若,则”的否定是“存在,则”
    C.设x,,则“且”是“”的必要而不充分条件
    D.设a,,则“”是“”的必要不充分条件
    【答案】ABD
    【分析】根据充分、必要条件和命题的否定定义依次判断即可.
    【详解】选项A,由,能推出,但是由,不能推出,
    例如当时,符合,但是不符合,
    所以“”是“”的充分不必要条件,故A正确;
    选项B,根据命题的否定的定义可知:命题“若,则”的否定是“存在,则”,故B正确;
    选项C,根据不等式的性质可知:由且能推出,充分性成立,故C错误;
    选项D,因为b可以等于零,所以由不能推出,充分性不成立,
    由可得且,故必要性成立,
    所以“”是“”的必要不充分条件,故D正确.
    故选:ABD.
    12.已知函数,则( )
    A.
    B.
    C.为偶函数
    D.的图象关于点中心对称
    【答案】BD
    【分析】对A,由的范围得到的范围,进而求出函数的值域;对B,通过运算即可得到答案;对C,根据函数奇偶性的定义即可判断;对D,结合C中的推理即可判断答案.
    【详解】对A,因为,则,,
    所以.A错误;
    对B,
    .B正确;
    对C,记,
    ,则函数为奇函数.C错误;
    对D,由C可知,为奇函数,则的图象关于点对称,所以的图象关于点中心对称.D正确.
    故选:BD.
    三、填空题
    13.设,则的值为 .
    【答案】11
    【分析】代入分段函数,结合分段函数自变量范围,逐步求出函数值.
    【详解】.
    故答案为:.
    14.函数,且,则的值是 .
    【答案】6
    【分析】设,利用奇函数的性质求解即可.
    【详解】令,
    因为定义域为,且,
    所以函数为奇函数,
    因为,所以,
    所以,
    故答案为:6
    15.已知为正数,且,则的最小值为
    【答案】
    【分析】根据“1”的变形及均值不等式求解即可.
    【详解】因为,
    所以,
    当且仅当时,即时,等号成立.
    故答案为:
    16.已知满足,,都有,则实数的取值范围为 .
    【答案】
    【分析】由题意得到的单调性,从而利用分段函数的性质,结合二次函数与一次函数的单调性即可得解.
    【详解】因为,,都有,
    所以在上为增函数,
    当时,,易知函数在上为增函数;
    当时,则,解得,
    综上,,则a的取值范围为,
    故答案为:.
    四、解答题
    17.已知集合.
    (1)若,求;
    (2)若,求实数a的取值范围.
    【答案】(1)
    (2)
    【分析】(1)代入,求出集合A,B,然后求并集即可.
    (2)解含参的二次不等式得集合B,再根据列不等式求解即可.
    【详解】(1),
    当时,,

    (2),
    又由(1),

    或,
    实数a的取值范围是.
    18.(1)计算:;
    (2)已知,且,求的值.
    【答案】(1) ;(2) .
    【分析】(1)根据幂指数运算即可;
    (2)将等式两边平方配凑求解;
    【详解】解析 (1)原式

    (2)∵,
    ∴,
    ∴.

    又∵且,
    ∴,
    ∴.
    19.已知二次函数满足,且有.
    (1)求函数的解析式;
    (2)若函数,,函数,求在区间上的最小值.
    【答案】(1);
    (2)
    【分析】(1)应用待定系数法求出函数解析式;
    (2)先求出二次函数的对称轴,再根据对称轴在不同区间分类讨论.
    【详解】(1)设,由,得,
    因为,所以,
    即,解得,
    所以;
    (2)易知,
    所以的对称轴为直线,又,
    ①当时,即时,在上单调递增,

    ②当时,即时,在上单调递减,
    在上单调递增,;
    ③当时,即时,在上单调递减,.
    综上所述,
    20.(1)已知,,求的取值范围;
    (2)已知,求的最小值.
    【答案】(1);(2)
    【分析】(1)令,求出、的值,即可得到,再利用不等式的性质计算可得;
    (2)由,再利用基本不等式计算可得.
    【详解】(1)令,则,解得,
    所以,
    因为,,
    所以,,
    所以,即,
    所以的取值范围为.
    (2)因为,所以,
    所以

    当且仅当,即时取等号,
    所以的最小值为.
    21.已知函数.
    (1)若,求的单调区间
    (2)若有最大值3,求的值
    (3)若的值域是,求的值
    【答案】(1)函数的单调递增区间是,单调递减区间是;
    (2)1;
    (3)0.
    【分析】(1)根据复合函数单调性判断,结合指数函数、二次函数性质判断单调区间;
    (2)由(1)及题设知,即可求参数值;
    (3)根据复合函数的值域,结合指数函数、二次函数性质确定参数值即可.
    【详解】(1)当时,,
    令,由在上单调递增,在上单调递减,
    而在R上单调递减,
    所以在上单调递减,在上单调递增,
    即的单调递增区间是,单调递减区间是.
    (2)令,,
    由于有最大值3,所以应有最小值,
    因此必有.解得,即有最大值3时,a为1.
    (3)由指数函数的性质知,要使的值域为,
    应使的值域为R,
    因此只能(因为若,则为二次函数,其值域不可能为R),
    故a的值为0.
    22.已知定义在上的函数满足:对,都有,且当时,.
    (1)判断函数的奇偶性并用定义证明;
    (2)判断函数在上的单调性,并用单调性定义证明;
    (3)解关于的不等式.
    【答案】(1)函数是奇函数,证明见解析
    (2)函数在上单调递减,证明见解析
    (3)
    【分析】(1)利用赋值法先求出,再得到的关系,进而可证奇偶性;
    (2)先取值,然后还是利用赋值法得到的正负,继而证明单调性;
    (3)结合前两问所得奇偶性与单调性,利用单调性的逆用即可求解抽象函数不等式.
    【详解】(1)函数是奇函数,
    证明:因为对,都有
    令,可得,解得;
    令,则,
    令,则,
    所以为定义在上的奇函数.
    (2)函数在上单调递减,
    证明:取,则
    可得,
    因为所以
    所以,
    又,
    所以,
    又当时,,
    所以,
    所以,即
    所以在上单调递减.
    (3)因为,且函数是奇函数,
    所以
    又的定义域为且在上是单调递减的,
    所以
    所以,解得
    所以不等式的解集为.
    相关试卷

    山西省阳泉市第一中学校2023-2024学年高二上学期期中数学试卷(含答案): 这是一份山西省阳泉市第一中学校2023-2024学年高二上学期期中数学试卷(含答案),共19页。试卷主要包含了选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    山西省阳泉市第一中学校2023-2024学年高二上学期11月期中考试数学试题(Word版附解析): 这是一份山西省阳泉市第一中学校2023-2024学年高二上学期11月期中考试数学试题(Word版附解析),共20页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    山西省阳泉市郊区阳泉市第一中学校2023-2024学年高一上学期11月期中数学试题: 这是一份山西省阳泉市郊区阳泉市第一中学校2023-2024学年高一上学期11月期中数学试题,共9页。试卷主要包含了已知集合,且,则,下列函数中既是奇函数,又在,若,则函数与图象大致是,若,,,则的大小关系是,已知为正实数,且,则的最小值为,下列结论正确的是,已知幂函数的图象经过点,则,已知集合.等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023-2024学年山西省阳泉市郊区阳泉市第一中学校高一上学期11月期中数学试题含答案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map