2023-2024学年河南省登封市大金店镇第二初级中学数学八年级第一学期期末检测试题含答案
展开这是一份2023-2024学年河南省登封市大金店镇第二初级中学数学八年级第一学期期末检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,化简的结果为,如图,图中直角三角形共有等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.若、、为的三边长,且满足,则的值可以为( )
A.2B.5C.6D.8
2.△ABC中,AB=3,AC=2,BC=a,下列数轴中表示的a的取值范围,正确的是( )
A.B.
C.D.
3.以下列三个数据为三角形的三边,其中能构成直角三角形的是( )
A.2,3,4B.4,5,6C.5,12,13D.5,6,7
4.如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在( )
A.△ABC三边垂直平分线的交点
B.△ABC三条角平分线的交点
C.△ABC三条高所在直线的交点
D.△ABC三条中线的交点
5.王师傅想做一个三角形的框架,他有两根长度分别为11cm和12cm的细木条,需要将其中一根木条分为两段,如果不考虑损耗和接头部分,那么他可以把( )分为两截.
A.11cm的木条B.12cm的木条C.两根都可以D.两根都不行
6.化简的结果为( )
A.﹣1B.1C.D.
7.如图,已知的六个元素,其中、、表示三角形三边的长,则下面甲、乙、丙、丁四个三角形中与不一定相似的图形是( )
A.甲B.乙C.丙D.丁
8.下列几组数,不能作为直角三角形的三边长的是( )
A.8,15,17B.4,6,8C.3,4,5D.6,8,10
9.如图,图中直角三角形共有
A.1个B.2个C.3个D.4个
10.中、、的对边分别是、、,下列命题为真命题的( )
A.如果,则是直角三角形
B.如果,则是直角三角形
C.如果,则是直角三角形
D.如果,则是直角三角形
二、填空题(每小题3分,共24分)
11.若分式方程有增根,则的值为__________.
12.目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=米,用科学记数法将16纳米表示为__________________米.
13.在直角坐标系内,已知A,B两点的坐标分别为A(-1,1),B(2,3),若M为x轴上的一点,且MA+MB最小,则M的坐标是________.
14.若3a2﹣a﹣2=0,则5+2a﹣6a2=_____.
15.如图,在平面直角坐标系中,平分,已知点坐标为, ,则的面积为 _____________.
16.在平面直角坐标系中,点A(3,-2)关于y轴对称的点坐标为________.
17.如图,在△ABC中,AB=5,AC=4,BC=3,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB、AC于点M、N;②分别以点M、N为圆心,以大于的长为半径作弧,两弧相交于点E;③作射线AE;④以同样的方法作射线BF,AE交BF于点O,连接OC,则OC=________.
18.若,则__________(填“”“”或“”)
三、解答题(共66分)
19.(10分)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.
(1)如图,当点E在BD上时.求证:FD=CD;
(2)当α为何值时,GC=GB?画出图形,并说明理由.
20.(6分)节日里,兄弟两人在60米的跑道上进行短距离比赛,两人从出发点同时起跑,哥哥到达终点时,弟弟离终点还差12米.
(1)若哥哥的速度为10米/秒,
①求弟弟的速度;
②如果两人重新开始比赛,哥哥从起点向后退10米,兄弟同时起跑,两人能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点.
(2)若哥哥的速度为m米/秒,
①弟弟的速度为________米/秒(用含m的代数式表示);
②如果两人想同时到达终点,哥哥应向后退多少米?
21.(6分)某同学碰到这么一道题“分解因式:a4+4”,不会做,去问老师,老师说:“能否变成平方差的形式?在原式加上4a2,再减去4a2,这样原式化为(a4+4a2+4)﹣4a2,……”,老师话没讲完,此同学就恍然大悟,他马上就做好了此题.你会吗?请完成此题.
22.(8分)计算题:
(1)+-
(2)×÷(﹣2)
23.(8分)已知P点坐标为(a+1,2a-3).
(1)点P在x轴上,则a= ;
(2)点P在y轴上,则a= ;
(3)点P在第四象限内,则a的取值范围是 ;
(4)点P一定不在 象限.
24.(8分)阅读下面材料:
小明遇到这样一个问题:
如图1,在中,平分,.求证:
小明通过思考发现,可以通过“截长、补短”两种方法解决问题:
方法1:如图2,在上截取,使得,连接,可以得到全等三角形,进而解决问题
方法二:如图3,延长到点,使得,连接,可以得到等腰三角形,进而解决问题
(1)根据阅读材料,任选一种方法证明
(2)根据自己的解题经验或参考小明的方法,解决下面的问题:如图4,四边形中,是上一点,,,,探究、、之间的数量关系,并证明
25.(10分)近几年石家庄雾霾天气严重,给人们的生活带来很大影响.某学校计划在室内安装空气净化装置,需购进,两种设备.每台种设备价格比每台种设备价格多1万元,花50万元购买的种设备和花70万元购买种设备的数量相同.
(1)求种、种设备每台各多少万元?
(2)根据单位实际情况,需购进、两种设备共10台,总费用不高于30万元,求种设备至少要购买多少台?
26.(10分)计算:
参考答案
一、选择题(每小题3分,共30分)
1、B
2、A
3、C
4、A
5、B
6、B
7、A
8、B
9、C
10、D
二、填空题(每小题3分,共24分)
11、
12、
13、 (,0)
14、1
15、1
16、
17、.
18、
三、解答题(共66分)
19、 (1)见解析;(2)见解析.
20、(1)①弟弟的速度是8米/秒;②不能同时到达,哥哥先到达终点;(2)①0.8m;②如果两人想同时到达终点,哥哥应向后退15米
21、见解析
22、 (1);(2)-1.
23、(1);(2);(3);(4)第二.
24、(1)证明见解析;(2),证明见解析
25、(1)中设备每台万元,种设备每台万元;(2)5台
26、(1);(2)1.
相关试卷
这是一份河南省登封市大金店镇第二初级中学2023-2024学年数学九年级第一学期期末预测试题含答案,共7页。试卷主要包含了已知函数是的图像过点,则的值为等内容,欢迎下载使用。
这是一份2023-2024学年河南省登封市大金店镇第二初级中学数学九上期末考试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,模型结论等内容,欢迎下载使用。
这是一份2023-2024学年河南省宝丰县杨庄镇第一初级中学数学八年级第一学期期末检测模拟试题含答案,共7页。