2023-2024学年浙江省丽水市莲都区八上数学期末复习检测试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.下列命题是假命题的是( )
A.平方根等于本身的实数只有0;B.两直线平行,内错角相等;
C.点P(2,-5)到x轴的距离为5;D.数轴上没有点表示π这个无理数.
2.如图,中,D为AB上一点,E为BC上一点,且,,则的度数为( )
A.50°B.60°C.70°D.75°
3.如图,已知△ABC,按以下步骤作图:①分别以 B,C 为圆心,以大于BC 的长为半径作弧,两弧相交于两点 M,N;②作直线 MN 交 AB 于点 D,连接 CD.若 CD=AC,∠A=50°,则∠ACB 的度数为( )
A.90°B.95°C.105°D.110°
4.如图, 直线y=kx(k为常数, k≠0)经过点A, 若B是该直线上一点, 则点B的坐标可能是()
A.(-2,-1)B.(-4,-2)C.(-2,-4)D.(6,3)
5.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线
是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三
角形的面积是y.则下列图象能大致反映y与x的函数关系的是( )
A.B.C.D.
6.下列各式中,正确的是
A.B.C.D.
7.如图,△ABC中,AB=AC,BC=5,,于D,EF垂直平分AB,交AC于F,在EF上确定一点P使最小,则这个最小值为( )
A.3B.4C.5D.6
8.下列各组中,没有公因式的一组是( )
A.ax-bx与by-ayB.6xy-8x2y与-4x+3
C.ab-ac与ab-bcD.(a-b)3与(b-a)2y
9.下列四个命题:①两直线平行,内错角相等;②对顶角相等;③等腰三角形的两个底角相等;④菱形的对角线互相垂直,其中逆命题是真命题的是( )
A.①②③④B.①③④C.①③D.①
10.点P(-5,4)到y轴的距离是( )
A.5B.4C.-5D.3
二、填空题(每小题3分,共24分)
11.一个等腰三角形的两边长分别为5或6,则这个等腰三角形的周长是
.
12.比较大小:4______(用“>”、“<”或“=”填空).
13.已知点A(x1,y1)、B(x2,y2 )是函数y=﹣2x+1图象上的两个点,若x1<x2,则y1﹣y2_____0(填“>”、“<”或“=”).
14.一组数据3,2,3,4,x的平均数是3,则它的方差是_____.
15.如图,直线与轴、轴的交点分别为,若直线上有一点,且点到轴的距离为1.5,则点的坐标是_______.
16.使分式的值是负数的取值范围是______.
17.如图,OC平分∠AOB,D为OC上一点,DE⊥OB于E,若DE=7,则D到OA的距离为____.
18.比较大小:_____1.(填“>”、“=”或“<”)
三、解答题(共66分)
19.(10分)如图,在△ABC中,∠BAC是钝角,按要求完成下列画图.(不写作法,保留作图痕迹)
(1)用尺规作∠BAC的平分线AE和AB边上的垂直平分线MN;
(2)用三角板作AC边上的高BD.
20.(6分)如图,在等边中,点(2,0),点是原点,点是轴正半轴上的动点,以为边向左侧作等边,当时,求的长.
21.(6分)先化简,再求值.,从这个数中选取一个合适的数作为的值代入求值.
22.(8分)已知:如图OA平分∠BAC,∠1=∠1.
求证:AO⊥BC.
同学甲说:要作辅助线;
同学乙说:要应用角平分线性质定理来解决:
同学丙说:要应用等腰三角形“三线合一”的性质定理来解决.
请你结合同学们的讨论写出证明过程.
23.(8分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,4),B(1,1),C(3,2).
(1)在直角坐标系中画出△ABC,并判断三角形的形状(不写理由):
(2)平移△ABC,使点A与点O重合,写出点B、点C平移后所得点的坐标,并描述这个平移过程.
24.(8分)为厉行节能减排,倡导绿色出行,我市推行“共享单车”公益活动.某公司在小区分别投放A、B两种不同款型的共享单车,其中A型车的投放量是B型车的投放量的倍,B型车的成本单价比A型车高20元,A型、B型单车投放总成本分别为30000元和26400元,求A型共享单车的成本单价是多少元?
25.(10分)先化简,再求值:,其中
26.(10分)问题情境:如图①,在直角三角形ABC中,∠BAC=90∘,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);
(1)特例探究:如图②,∠MAN=90∘,射线AE在这个角的内部,点B.C在∠MAN的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;
(2)归纳证明:如图③,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;
(3)拓展应用:如图④,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E.F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为18,求△ACF与△BDE的面积之和是多少?
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、C
4、C
5、B
6、D
7、D
8、C
9、C
10、A
二、填空题(每小题3分,共24分)
11、16或1.
12、>
13、>.
14、0.4
15、或
16、x>
17、1.
18、>.
三、解答题(共66分)
19、(1)作图见解析;(2)作图见解析.
20、
21、;当时,原式=3
22、见解析
23、(1)等腰直角三角形(2)点B平移后为(-1,-3),点C平移后为(1,-2);平移过程:向左平移2个单位,向下平移4个单位
24、A型共享单车的成本单价是200元
25、,
26、(1)见解析;(2)见解析;(3)6.
浙江省丽水市莲都区2023-2024学年八年级上学期1月期末数学试题: 这是一份浙江省丽水市莲都区2023-2024学年八年级上学期1月期末数学试题,共4页。
浙江省丽水市莲都区2023-2024学年九上数学期末检测模拟试题含答案: 这是一份浙江省丽水市莲都区2023-2024学年九上数学期末检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,函数与,在中,=90〫,,则的值是等内容,欢迎下载使用。
2023-2024学年浙江省金华、丽水市八上数学期末调研试题含答案: 这是一份2023-2024学年浙江省金华、丽水市八上数学期末调研试题含答案,共7页。试卷主要包含了计算,估计的运算结果应在,已知,则a+b+c的值是等内容,欢迎下载使用。