第1章三角形的初步知识(浙教版-中考真题精选)-浙江省2023-2024学年八年级上学期期末数学
展开一、单选题
1.(2023·浙江衢州·统考中考真题)如图,在中,以点A为圆心,适当长为半径画弧,分别交,于点D,E.分别以点D,E为圆心,大于长为半径画弧,交于内一点F.连结并延长,交于点G.连结,.添加下列条件,不能使成立的是( )
A.B.C.D.
2.(2023·浙江金华·统考中考真题)在下列长度的四条线段中,能与长的两条线段围成一个三角形的是( )
A.B.C.D.
3.(2022·浙江衢州·统考中考真题)线段首尾顺次相接组成三角形,若,则的长度可以是( )
A.3B.4C.5D.6
4.(2022·浙江杭州·统考中考真题)如图,CD⊥AB于点D,已知∠ABC是钝角,则( )
A.线段CD是ABC的AC边上的高线B.线段CD是ABC的AB边上的高线
C.线段AD是ABC的BC边上的高线D.线段AD是ABC的AC边上的高线
5.(2022·浙江杭州·统考中考真题)如图,已知,点E在线段AD上(不与点A,点D重合),连接CE.若∠C=20°,∠AEC=50°,则∠A=( )
A.10°B.20°C.30°D.40°
6.(2022·浙江舟山·中考真题)用尺规作一个角的角平分线,下列作法中错误的是( )
A.B.
C.D.
7.(2022·浙江金华·统考中考真题)如图,与相交于点O,,不添加辅助线,判定的依据是( )
A.B.C.D.
8.(2022·浙江金华·统考中考真题)已知三角形的两边长分别为和,则第三边的长可以是( )
A.B.C.D.
9.(2020·浙江绍兴·统考中考真题)长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为( )
A.4B.5C.6D.7
10.(2019·浙江宁波·统考中考真题)已知直线,将一块含角的直角三角板按如图方式放置,其中斜边与直线交于点.若,则的度数为( )
A.B.C.D.
11.(2019·浙江宁波·统考中考真题)能说明命题“关于的方程一定有实数根”是假命题的反例为( )
A.B.C.D.
12.(2019·浙江台州·统考中考真题)下列长度的三条线段,能组成三角形的是( )
A.3,4,8B.5,6,10C.5,5,11D.5,6,11
13.(2019·浙江绍兴·统考中考真题)如图,墙上钉着三根木条,量得,,那么木条所在直线所夹的锐角是( )
A.B.C.D.
14.(2019·浙江杭州·中考真题)在中,若一个内角等于另外两个角的差,则( )
A.必有一个角等于B.必有一个角等于
C.必有一个角等于D.必有一个角等于
15.(2019·浙江金华·统考中考真题)若长度分别为的三条线段能组成一个三角形,则a的值可以是( )
A.1B.2C.3D.8
二、填空题
16.(2023·浙江·统考中考真题)如图,在与中,,请添加一个条件 ,使得.
17.(2023·浙江杭州·统考中考真题)如图,点分别在的边上,且,点在线段的延长线上.若,,则 .
18.(2020·浙江杭州·统考中考真题)如图,AB∥CD,EF分别与AB,CD交于点B,F.若∠E=30°,∠EFC=130°,则∠A= .
19.(2018·浙江金华·中考真题)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC (不添加其他字母及辅助线),你添加的条件是 .
20.(2017·浙江绍兴·中考真题)以Rt△ABC的锐角顶点A为圆心,适当长为半径作弧,与边AB、AC各相交于一点,再分别以两个交点为圆心,适当长为半径作弧,过两弧的交点与点A作直线,与边BC交于点D.若∠ADB=60°,点D到AC的距离为2,则AB的长为 .
21.(2016·浙江金华·统考中考真题)如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是 .
三、解答题
22.(2023·浙江衢州·统考中考真题)已知:如图,在和中,在同一条直线上.下面四个条件:①;②;③;④.
(1)请选择其中的三个条件,使得(写出一种情况即可);
(2)在(1)的条件下,求证:.
23.(2022·浙江衢州·统考中考真题)已知:如图,.求证:.
24.(2021·浙江杭州·统考中考真题)在①,②,③这三个条件中选择其中一个,补充在下面的问题中,并完成问题的解答.
问题:如图,在中,,点在边上(不与点,点重合),点在边上(不与点,点重合),连接,,与相交于点.若______,求证:.
注:如果选择多个条件分别作答,按第一个解答计分.
25.(2019·浙江温州·统考中考真题)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F,
(1)求证:△BDE≌△CDF;
(2)当AD⊥BC,AE=1,CF=2时,求AC的长.
参考答案:
1.D
【分析】根据题意可知是三角形的角平分线,再结合选项所给的条件逐次判断能否得出即可.
【详解】根据题中所给的作图步骤可知,
是的角平分线,即.
当时,又,且,
所以,
所以,
故A选项不符合题意.
当时,
,
又,且,
所以,
所以,
故B选项不符合题意.
当时,
因为,,,
所以,
所以,
又,
所以,
即.
又,
所以,
则方法同(2)可得出,
故C选项不符合题意.
故选:D.
【点睛】本题考查全等三角形的判定,熟知全等三角形的判定定理是解题的关键.
2.C
【分析】根据三角形三边的关系求出第三边的取值范围,再判断即可.
【详解】解:设第三边长度为,
则第三边的取值范围是,
只有选项C符合,
故选:C.
【点睛】本题考查了三角形三边的关系,能熟练求出求出第三边的取值范围是本题的关键.
3.A
【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边只差小于第三边,即可得出c的取值范围.
【详解】解:∵,
∴,
即:,
∴c的长度可能为3.
故选:A
【点睛】本题考查三角形的三边和关系,属于基础题,熟练掌握三角形三边关系,得出第三边的取值范围是解题的关键.
4.B
【分析】根据高线的定义注意判断即可.
【详解】∵ 线段CD是ABC的AB边上的高线,
∴A错误,不符合题意;
∵ 线段CD是ABC的AB边上的高线,
∴B正确,符合题意;
∵ 线段AD是ACD的CD边上的高线,
∴C错误,不符合题意;
∵线段AD是ACD的CD边上的高线,
∴D错误,不符合题意;
故选B.
【点睛】本题考查了三角形高线的理解,熟练掌握三角形高线的相关知识是解题的关键.
5.C
【分析】根据三角形外角的性质、平行线的性质进行求解即可;
【详解】解:∵∠C+∠D=∠AEC,
∴∠D=∠AEC-∠C=50°-20°=30°,
∵,
∴∠A=∠D=30°,
故选:C.
【点睛】本题主要考查三角形外角的性质、平行线的性质,掌握相关性质并灵活应用是解题的关键.
6.D
【分析】根据作图轨迹及角平分线的定义判断即可得出答案.
【详解】A、如图,
由作图可知:,
又∵,
∴,
∴,
∴平分.
故A选项是在作角平分线,不符合题意;
B、如图,
由作图可知:,
又∵,
∴,
∴,
∴,
∵,,
∴,
∴,
∵,
∴,
∴,
∴平分.
故B选项是在作角平分线,不符合题意;
C、如图,
由作图可知:,
∴,,
∴,
∴,
∴平分.
故C选项是在作角平分线,不符合题意;
D、如图,
由作图可知:,
又∵,
∴,
∴
故D选项不是在作角平分线,符合题意;
故选:D
【点睛】本题考查了角平分线的作图,全等三角形的性质与判定,掌握以上知识是解题的关键.
7.B
【分析】根据,,正好是两边一夹角,即可得出答案.
【详解】解:∵在△ABO和△DCO中,,
∴,故B正确.
故选:B.
【点睛】本题主要考查了全等三角形的判定,熟练掌握两边对应相等,且其夹角也对应相等的两个三角形全等,是解题的关键.
8.C
【分析】先确定第三边的取值范围,后根据选项计算选择.
【详解】设第三边的长为x,
∵ 角形的两边长分别为和,
∴3cm<x<13cm,
故选C.
【点睛】本题考查了三角形三边关系定理,熟练确定第三边的范围是解题的关键.
9.B
【分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.
【详解】①长度分别为5、3、4,能构成三角形,且最长边为5;
②长度分别为2、6、4,不能构成三角形;
③长度分别为2、7、3,不能构成三角形;
④长度分别为6、3、3,不能构成三角形;
综上所述,得到三角形的最长边长为5.
故选:B.
【点睛】此题考查构成三角形的条件,三角形的三边关系,解题中运用不同情形进行讨论的方法,注意避免遗漏构成的情况.
10.C
【分析】先求出∠AED=∠1+∠B=25°+45°=70°,再根据平行线的性质可知∠2=∠AED=70°.
【详解】设直线与的交点为.
∵是的一个外角,
∴,
∵,,
∴,
∵,
∴.
故选C.
【点睛】本题主要考查了平行线的性质以及三角形外角性质,解题的关键是借助平行线和三角形内外角转化角.
11.D
【分析】利用m=5使方程x2-4x+m=0没有实数解,从而可把m=5作为说明命题“关于x的方程x2-4x+m=0一定有实数根”是假命题的反例.
【详解】当m=5时,方程变形为x2-4x+m=5=0,
因为△=(-4)2-4×5<0,
所以方程没有实数解,
所以m=5可作为说明命题“关于x的方程x2-4x+m=0一定有实数根”是假命题的反例.
故选D.
【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
12.B
【分析】根据三角形的三边关系即可求解.
【详解】A选项,,两边之和小于第三边,故不能组成三角形
B选项,,,两边之各大于第三边,两边之差小于第三边,故能组成三角形
C选项,,两边之和小于第三边,故不能组成三角形
D选项,,两边之和不大于第三边,故不能组成三角形
故选B.
【点睛】此题主要考查三角形的三边关系,解题的关键是熟知两边之和大于第三边.
13.B
【分析】根据对顶角相等求出∠3,根据三角形内角和定理计算,得到答案.
【详解】如图,
∠3=∠2=100°,
∴木条a,b所在直线所夹的锐角=180°-100°-70°=10°,
故选B.
【点睛】本题考查的是三角形内角和定理、对顶角的性质,掌握三角形内角和等于180°是解题的关键.
14.D
【分析】先设三角形的两个内角分别为x,y,则可得第三个角(180°-x-y),再分三种情况讨论,即可得到答案.
【详解】设三角形的一个内角为x,另一个角为y,则第三个角为(180°-x-y),则有三种情况:
①
②
③
综上所述,必有一个角等于90°
故选D.
【点睛】本题考查三角形内角和的性质,解题的关键是熟练掌握三角形内角和的性质,分情况讨论.
15.C
【分析】根据三角形三边关系可得5﹣3<a<5+3,解不等式即可求解.
【详解】由三角形三边关系定理得:5﹣3<a<5+3,
即2<a<8,
由此可得,符合条件的只有选项C,
故选:C.
【点睛】本题考查了三角形三边关系,解题的关键是能根据三角形的三边关系定理得出5﹣3<a<5+3,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.
16.或或
【分析】根据对顶角相等可得,再添加边相等,可利用或判定.
【详解】解:∵在与中,,,
∴添加,则;
或添加,则;
或添加,则;
故答案为:(答案不唯一).
【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:、、、、.注意:、不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
17./90度
【分析】首先根据平行线的性质得到,然后根据三角形外角的性质求解即可.
【详解】∵,,
∴,
∵,
∴.
故答案为:.
【点睛】此题考查了平行线的性质和三角形外角的性质,解题的关键是熟练掌握以上知识点.
18.20°
【分析】直接利用平行线的性质得出∠ABF=50°,进而利用三角形外角的性质得出答案.
【详解】∵AB∥CD,
∴∠ABF+∠EFC=180°,
∵∠EFC=130°,
∴∠ABF=50°,
∵∠A+∠E=∠ABF=50°,∠E=30°,
∴∠A=20°.
故答案为:20°.
【点睛】此题主要考查了平行线的性质以及三角形外角的性质,求出∠ABF=50°是解答此题的关键.
19.AC=BC
【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.
【详解】解:添加AC=BC,
∵△ABC的两条高AD,BE,
∴∠ADC=∠BEC=90°,
∴∠DAC+∠C=90°,∠EBC+∠C=90°,
∴∠EBC=∠DAC,
在△ADC和△BEC中
,
∴△ADC≌△BEC(AAS),
故答案为:AC=BC.
【点睛】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,解题的关键是注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
20..
【详解】根据题中的语句作图可得下面的图,
过点D作DE⊥AC于E,
由尺规作图的方法可得AD为∠BAC的角平分线,
因为∠ADB=60°,
所以∠B=90°,
由角平分线的性质可得BD=DE=2,
在Rt△ABD中,
AB=BD·tan∠ADB=.
故答案为:.
考点:作图—尺规作图的定义;角平分线的性质.
21.80°
【分析】延长DE交AB于F,根据平行线的性质得到∠AFE=∠B,∠B+∠C=180°,根据三角形的外角的性质即可得到结论.
【详解】延长DE交AB于F,
∵,
∴,
∵∠C=120°,
∴∠AFD=60°,
∵∠AED=∠AFD+∠A,∠A=20°,
∴∠AED=80°,
故答案为:80°.
【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.
22.(1)①②③或①③④(写出一种情况即可)
(2)见解析
【分析】(1)根据两三角形全等的判定条件,选择合适的条件即可;
(2)根据(1)中所选的条件,进行证明即可.
【详解】(1)解:根据题意,可以选择的条件为:①②③;
或者选择的条件为:①③④;
(2)证明:当选择的条件为①②③时,
,
,
即,
在和中,
,
;
当选择的条件为①③④时,
,
,
即,
在和中,
,
.
【点睛】本题考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.
23.见解析
【分析】由∠3=∠4可得∠ACB=∠ACD,然后即可根据ASA证明△ACB≌△ACD,再根据全等三角形的性质即得结论.
【详解】解:∵,,,
∴,
∵ ,
∴△ACB≌△ACD,
∴.
【点睛】本题考查了全等三角形的判定和性质,证明△ACB≌△ACD是解本题的关键.
24.见解析
【分析】根据全等三角形的判定方法解答即可.
【详解】解:选择条件①的证明:
因为,
所以,
又因为,,
所以≌,
所以.
选择条件②的证明:
因为,
所以,
又因为,,
所以≌,
所以.
选择条件③的证明:
因为,
所以,
又因为,,
所以≌,
所以
【点睛】此题主要考查了全等三角形的判定方法,证明两个三角形全等的方法有:SSS,AAS,SAS,ASA,HL
25.(1)见解析;(2).
【分析】(1)根据平行线的性质得到∠B=∠FCD,∠BED=∠F,由AD是BC边上的中线,得到BD=CD,于是得到结论;
(2)根据全等三角形的性质得到BE=CF=2,求得AB=AE+BE=1+2=3,于是得到结论.
【详解】解:(1)∵,
∴.
∵是边上的中线,
∴,
∴.
(2)∵,
∴,
∴.
∵,
∴.
【点睛】本题考查了全等三角形的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.
第6章反比例函数(浙教版-中考真题精选)-浙江省2023-2024学年八年级上学期数学同步培优单元: 这是一份第6章反比例函数(浙教版-中考真题精选)-浙江省2023-2024学年八年级上学期数学同步培优单元,共24页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
第5章一次函数(浙教版-中考真题精选)-浙江省2023-2024学年八年级上学期期末数学提高练习: 这是一份第5章一次函数(浙教版-中考真题精选)-浙江省2023-2024学年八年级上学期期末数学提高练习,共31页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
第4章图形与坐标(浙教版-中考真题精选)-浙江省2023-2024学年八年级上学期期末数学提高练: 这是一份第4章图形与坐标(浙教版-中考真题精选)-浙江省2023-2024学年八年级上学期期末数学提高练,共14页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。