安徽省枞阳县2023-2024学年数学八上期末达标测试试题含答案
展开这是一份安徽省枞阳县2023-2024学年数学八上期末达标测试试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列运算不正确的是,下列运算正确的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.在如图所示的网格纸中,有A、B两个格点,试取格点C,使得△ABC是等腰三角形,则这样的格点C的个数是( )
A.4B.6C.8D.10
2.在折纸活动中,王强做了一张△ABC纸片,点D,E分别是AB,AC上的点,将△ABC沿着DE折叠压平,A与A1重合,且∠A1DB=90°,若∠A=50°,则∠CEA1等于( )
A.20°B.15°C.10°D.5°
3.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图2所示的“数学风车”,则这个风车的外围周长是( )
A.52B.68C.72D.76
4.2的平方根为( )
A.4B.±4C.D.±
5.下列运算不正确的是( )
A.x2•x3=x5B.(x2)3=x6C.x3+x3=2x6D.(﹣2x)3=﹣8x3
6.下列从左边到右边的变形,是因式分解的是( )
A.y2﹣2y+4=(y﹣2)2
B.10x2﹣5x=5x(2x﹣1)
C.a(x+y)=ax+ay
D.t2﹣16+3t=(t+4)(t﹣4)+3t
7.下列运算正确的是( )
A.B.C.α8α4= α2D.
8.如图,∠MON=600,且OA平分∠MON,P是射线OA上的一个点,且OP=4,若Q是射线OM上的一个动点,则PQ的最小值为( ).
A.1B.2C.3D.4
9..已知两条线段长分别为3,4,那么能与它们组成直角三角形的第三条线段长是( )
A.5B.
C.5或D.不能确定
10.如图,MN是等边三角形ABC的一条对称轴,D为AC的中点,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD的度数是( )
A.30°B.15°C.20°D.35°
二、填空题(每小题3分,共24分)
11.如图,AB=6cm,AC=BD=4cm.∠CAB=∠DBA,点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).设点Q的运动速度为xcm/s,若使得△ACP与△BPQ全等,则x的值为_____.
12.已知CD是Rt△ABC的斜边AB上的中线,若∠A=35°,则∠BCD=_____________.
13.一个等腰三角形的周长为12cm,其中一边长为3cm, 则该等腰三角形的底边长为________
14.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=2,[-2.5]=-2.现对82进行如下操作:82[]=9[]=2[]=2,这样对82只需进行2次操作后变为2,类似地,对222只需进行___________次操作后变为2.
15.△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=.现将△DEF与△ABC按如图所示的方式叠放在一起,使△ABC保持不动,△DEF运动,且满足点E在边BC上运动(不与B,C重合),边DE始终经过点A,EF与AC交于点M.在△DEF运动过程中,若△AEM能构成等腰三角形,则BE的长为______.
16.如图,在中,,的角平分线交于点,连接并延长交于,于,若,,则____________.
17.如图,一次函数与一次函数的图像相交于点,则关于的不等式的解集为__________.
18.如图,中,,,、分别平分、,过点作直线平行于,交、于、,则的周长为______.
三、解答题(共66分)
19.(10分)阅读与思考:
因式分解----“分组分解法”:分组分解法指通过分组分解的方式来分解用提公因式法和公式法无法直接分解的多项式,比如,四项的多项式一般按照“两两”分组或“三一”分组进行分组分解.分析多项式的特点,恰当的分组是分组分解法的关键.
例1:“两两”分组:
我们把和两项分为一组,和两项分为一组,分别提公因式,立即解除了困难.同样.这道题也可以这样做:
例2:“三一”分组:
我们把,,三项分为一组,运用完全平方公式得到,再与-1用平方差公式分解,问题迎刃而解.
归纳总结:用分组分解法分解因式的方法是先恰当分组,然后用提公因式法或运用公式法继续分解.
请同学们在阅读材料的启发下,解答下列问题:
(1)分解因式:
①;
②
(2)若多项式利用分组分解法可分解为,请写出,的值.
20.(6分)如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交于点B,过点B的直线交x轴于点C,且AB=BC.
(1)求直线BC的解析式;
(2)点P为线段AB上一点,点Q为线段BC延长线上一点,且AP=CQ,设点Q横坐标为m,求点P的坐标(用含m的式子表示,不要求写出自变量m的取值范围);
(3)在(2)的条件下,点M在y轴负半轴上,且MP=MQ,若∠BQM=45°,求直线PQ的解析式.
21.(6分)为了进一步了解某校初中学生的体质健康状况,对八年级的部分学生进行了体质监测,同时统计了每个人的得分(假设这个得分为,满分为50分).体质检测的成绩分为四个等级:优秀、良好、合格、不合格.根据调查结果绘制了下列两福不完整的统计图,请你根据统计图提供的信息回答以下问题:
(1)补全上面的扇形统计图和条形统计图;
(2)被测试的部分八年级学生的体质测试成绩的中位数落在 等级:
(3)若该校八年级有1400名学生,估计该校八年级体质为“不合格”的学生约有多少人?
22.(8分)某服务厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:(I)买一套西装送一条领带;(II)西装和领带均按定价的90%付款.某超市经理现要到该服务厂购买西装20套,领带若干条(不少于20条).
(1)设购买领带为x(条),采用方案I购买时付款数为y1(元),采用方案II购买时付款数为(元).分别写出采用两种方案购买时付款数与领带条数x之间的函数关系式;
(2)就领带条数x讨论在上述方案中采用哪种方案购买合算.
23.(8分)解方程:+1=.
24.(8分)如图, ABC中,AB=AC,AD⊥BC于点D,延长AB至点E,使∠AEC=∠DAB.判断CE与AD的数量关系,并证明你的结论.
25.(10分)如图,,,,垂足分别为,.求证:.
26.(10分)分解因式:
(1); (2)
参考答案
一、选择题(每小题3分,共30分)
1、C
2、C
3、D
4、D
5、C
6、B
7、D
8、B
9、C
10、A
二、填空题(每小题3分,共24分)
11、1或.
12、55°
13、3cm
14、2
15、2﹣或
16、10
17、x>-1.
18、1
三、解答题(共66分)
19、(1)①(a﹣b)(a+3);②(x﹣y+3)(x﹣y﹣3);(1)a=4,b=1.
20、(1)y=﹣2x+6;(2)点P(m﹣6,2m﹣6);(3)y=﹣x+
21、(1)见解析;(2)合格;(3)估计该校八年级体质为“不合格”的学生约有448人.
22、(1)yI=40x+3200(x≥20);yII=36x+3600(x≥20);(2)买1条领带时,可采用两种方案之一;购买领带超过1条时,采用方案II购买合算;购买领带20条以上不超过1条时,采用方案 I购买合算
23、.
24、CE=2AD,证明详见解析
25、详见解析
26、(1);(2).
相关试卷
这是一份安徽省枞阳县联考2023-2024学年数学九上期末达标测试试题含答案,共7页。试卷主要包含了答题时请按要求用笔,方程的根是等内容,欢迎下载使用。
这是一份安徽省枞阳县2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共9页。试卷主要包含了下列事件中为必然事件的是,下列函数中,图象不经过点等内容,欢迎下载使用。
这是一份2023-2024学年安徽省铜陵市枞阳县九上数学期末达标检测试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。