山东省齐河、夏津、临邑、禹城、武城五县2023-2024学年八上数学期末学业质量监测试题含答案
展开
这是一份山东省齐河、夏津、临邑、禹城、武城五县2023-2024学年八上数学期末学业质量监测试题含答案,共7页。试卷主要包含了平面直角坐标系中,点P,下列运算正确的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.若,则的值为( )
A.B.C.D.
2.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=( )
A.80°B.60°C.50°D.40°
3.施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原来计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是( )
A.B.
C.D.
4.如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是( )
A.点AB.点BC.点CD.点D
5.若把分式中的x和y都扩大10倍,那么分式的值( )
A.扩大10倍B.不变C.缩小10倍D.缩小20倍
6.如图,在中,,,的垂直平分线交于点,则的度数为( )
A.B.C.D.
7.下列各点中,位于平面直角坐标系第四象限的点是( )
A.(1,2) B.(﹣1,2) C.(1,﹣2) D.(﹣1,﹣2)
8.平面直角坐标系中,点P(-3,4)关于轴对称的点的坐标为( )
A.(3,4)B.(-3,-4)C.(-3,4)D.(3,-4)
9.下列运算正确的是( )
A.3a–2a= 1B.a2·a3=a6 C.(a–b)2=a2–2ab+b2D.(a+b)2=a2+b2
10.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( )
A.众数是5B.中位数是5C.平均数是6D.方差是3.6
二、填空题(每小题3分,共24分)
11.化简:_____.
12.一个多边形的内角比四边形内角和多,并且这个多边形的各内角都相等,这个多边形的每个内角的度数是__________.
13.已知A(1,﹣2)与点B关于y轴对称.则点B的坐标是______.
14.一个多边形的内角和是外角和的倍,那么这个多边形的边数为_______.
15.如图,在中,是边上一点,且在的垂直平分线上,若,,则 _________.
16.我们用[m]表示不大于m的最大整数,如:[2]=2,[4.1]=4,[1.99]=1.(1)=_____;(2)若[1+,则x的取值范围是_____.
17.小明用加减消元法解二元一次方程组.由①②得到的方程是________.
18.多项式1+9x2加上一个单项式后,使它能成为一个整式的完全平方式,那么加上的单项式可以是_____(填上一个你认为正确的即可).
三、解答题(共66分)
19.(10分)在慈善一日捐活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成下面的统计图.
(1)这50名同学捐款的众数为 元,中位数为 元;
(2)该校共有600名学生参与捐款,请估计该校学生的捐款总数.
20.(6分)(1)计算:;
(2)先化简,再求值: ,其中,.
21.(6分)如图,在平面直角坐标系中,,,,点、在轴上且关于轴对称.
(1)求点的坐标;
(2)动点以每秒2个单位长度的速度从点出发沿轴正方向向终点运动,设运动时间为秒,点到直线的距离的长为,求与的关系式;
(3)在(2)的条件下,当点到的距离为时,连接,作的平分线分别交、于点、,求的长.
22.(8分)如图,在△ABC中,∠ACB=90°,点E,F在边AB上,将边AC沿CE翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B'处.
(1)求∠ECF的度数;
(2)若CE=4,B'F=1,求线段BC的长和△ABC的面积.
23.(8分)学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表
请你根据统计图表中的信息,解答下列问题:
______,______.
该调查统计数据的中位数是______,众数是______.
请计算扇形统计图中“3次”所对应扇形的圆心角的度数;
若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.
24.(8分)解不等式组
25.(10分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小明以灵感,他惊喜的发现,当两个全等的直角三角形如图①或图②摆放时,都可以用“面积法”来证明,下面是小明利用图①证明勾股定理的过程:将两个全等的直角三角形按图①所示摆放,其中∠DAB=90°,求证:
证明:连结DB,过点D作BC边上的高DF,则DF=EC=b-a,FC=DE=b,
∵
请参照上述证法,利用图②完成下面的证明:将两个全等的直角三角形按图②所示摆放,其中∠DAB=90°.求证:
26.(10分)如图, 是等腰直角三角形,,为延长线上一点,点在上, 的延长线交于点, .求证: .
参考答案
一、选择题(每小题3分,共30分)
1、A
2、D
3、B
4、B
5、B
6、A
7、C
8、B
9、C
10、D
二、填空题(每小题3分,共24分)
11、1
12、
13、(﹣1,﹣2)
14、1
15、33
16、1
17、
18、6x或﹣6x或x2或﹣1或﹣9x1.
三、解答题(共66分)
19、(1)2元;2元;(2)1.
20、(1);(2),
21、(1)C(4,0);(2);(3).
22、(1)∠ECF=45°;(2)BC=,和△ABC的面积为.
23、17、20;2次、2次;;人.
24、0≤x
相关试卷
这是一份2023-2024学年山东省齐河、夏津、临邑、禹城、武城五县数学九上期末监测试题含答案,共7页。试卷主要包含了若一次函数y=ax+b等内容,欢迎下载使用。
这是一份山东省齐河、夏津、临邑、禹城、武城五县2023-2024学年数学九年级第一学期期末质量检测模拟试题含答案,共7页。试卷主要包含了抛物线的顶点坐标是,下列命题是真命题的是,若点,,在反比例函数,如图,为线段上一动点等内容,欢迎下载使用。
这是一份山东省齐河、夏津、临邑、禹城、武城五县2023-2024学年八上数学期末综合测试试题含答案,共8页。试卷主要包含了若分式的值是零,则x的值是,已知,,则,下列命题是假命题的是等内容,欢迎下载使用。