江西省宜春实验中学2023-2024学年数学八年级第一学期期末考试试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.用反证法证明“在△ABC中,如果∠B≠∠C,那么AB≠AC“时,应假设( )
A.AB=ACB.∠B=∠CC.AB≠ACD.∠B≠∠C
2.如图,数轴上A,B两点对应的实数分别是1和,若A点关于B点的对称点为点C,则点C所对应的实数为( )
A.2-1B.1+C.2+D.2+1
3.已知线段,,线段与、构成三角形,则线段的长度的范围是( )
A.B.C.D.无法确定
4.若一次函数y=(k-3)x-1的图像不经过第一象限,则
A.k<3B.k>3C.k>0D.k<0
5.一辆客车从霍山开往合肥,设客车出发th后与合肥的距离为skm,则下列图象中能大致反映s与t之间函数关系的是( )
A.B.C.D.
6.学校开展为贫困地区捐书活动,以下是5名同学捐书的册数:2,2,x,4,1.已知这组数据的平均数是4,则这组数据的中位数和众数分别是( )
A.2和2B.4和2C.2和3D.3和2
7.甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元,若将甲种10千克、乙种9千克、丙种3千克混在一起出售,为确保不亏本,售价至少应定为每千克( )
A.6元B.6.5元C.6.7元D.7元
8.某化肥厂计划每天生产化肥x吨,由于采用了新技术,每天多生产化 肥3吨,因此实际生产150吨化肥与原计划生产化肥120吨化肥的时间相等,则下列所列方程正确的是( )
A.B.
C.D.
9.每天用微信计步是不少市民的习惯,小张老师记录了一周每天的步数并制作成折线统计图,则小张老师这一周一天的步数超过7000步的有( )
A.1天B.2天C.3天D.4天
10.已知一次函数y=kx+b的图象经过点(0,﹣1)与(﹣2,0),则不等式kx+b>0的解集是( )
A.x<﹣2B.x>﹣2C.x<﹣1D.x>﹣1
二、填空题(每小题3分,共24分)
11.已知为实数,且,则______.
12.如图所示,在中,,将点C沿折叠,使点C落在边D点,若,则______.
13.,,点在格点上,作出关于轴对称的,并写出点的坐标为________.
14.一辆汽车油箱中现存油,汽车每行驶耗油,则油箱剩余油量与汽车行驶路程之间的关系式是______________.
15.已知多项式是关于的完全平方式,则________.
16.对实数a、b,定义运算☆如下:a☆b=,例如:2☆3=2﹣3=,则计算:[2☆(﹣4)]☆1=_____.
17.在平面直角坐标系中,点A的坐标是(4,0),点P在直线y=﹣x+m上,且AP=OP=4,则m的值为_____.
18.若分式的值为零,则x的值为_____.
三、解答题(共66分)
19.(10分)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:
4.7 2.1 3.1 2.3 5.2 2.8 7.3 4.3 4.8 6.7
4.5 5.1 6.5 8.9 2.2 4.5 3.2 3.2 4.5 3.5
3.5 3.5 3.6 4.9 3.7 3.8 5.6 5.5 5.9 6.2
5.7 3.9 4.0 4.0 7.0 3.7 9.5 4.2 6.4 3.5
4.5 4.5 4.6 5.4 5.6 6.6 5.8 4.5 6.2 7.5
频数分布表
(1)把上面频数分布表和频数分布直方图补充完整;
(2)从直方图中你能得到什么信息?(写出两条即可);
(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?
20.(6分)教材呈现:下图是华师版八年级上册数学教材第94页的部分内容.
定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.
定理应用:
(1)如图②,在中,直线分别是边的垂直平分线,直线m、n交于点,过点作于点.
求证:.
(1)如图③,在中,,边的垂直平分线交于点,边的垂直平分线交于点.若,则的长为__________.
21.(6分)如图,四边形OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处.
(1)求CE的长;
(2)求点D的坐标.
22.(8分)阅读材料:解分式不等式<1
解:根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:①或②
解①得:无解;
解②得:﹣2<x<1
所以原不等式的解集是﹣2<x<1
请仿照上述方法解下列不等式:
(1)
(2)(x+2)(2x﹣6)>1.
23.(8分)将直角三角板ABC按如图1放置,直角顶点C与坐标原点重合,直角边AC、BC分别与x轴和y轴重合,其中∠ABC=30°.将此三角板沿y轴向下平移,当点B平移到原点O时运动停止.设平移的距离为m,平移过程中三角板落在第一象限部分的面积为s,s关于m的函数图象(如图2所示)与m轴相交于点P(,0),与s轴相交于点Q.
(1)试确定三角板ABC的面积;
(2)求平移前AB边所在直线的解析式;
(3)求s关于m的函数关系式,并写出Q点的坐标.
24.(8分)如图,在中,,,是等边三角形,点在边上.
(1)如图1,当点在边上时,求证;
(2)如图2,当点在内部时,猜想和数量关系,并加以证明;
(3)如图3,当点在外部时,于点,过点作,交线段的延长线于点,,.求的长.
25.(10分)已知,在平面直角坐标系中,、,m、n满足.C为AB的中点,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.
(1)如图1,当点P在线段AB上运动时,点D恰在线段OA上,则PE与AB的数量关系为 .
(2)如图2,当点D在点A右侧时,(1)中结论是否成立?若成立,写出证明过程;若不成立,说明理由.
(3)设AB=5,若∠OPD=45°,直接写出点D的坐标.
26.(10分)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.
(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?
(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?
参考答案
一、选择题(每小题3分,共30分)
1、A
2、A
3、C
4、A
5、B
6、D
7、C
8、C
9、B
10、A
二、填空题(每小题3分,共24分)
11、或.
12、1
13、(4,-3).
14、y=50-0.1x
15、15或
16、1
17、2+2或2﹣2.
18、1
三、解答题(共66分)
19、详见解析
20、证明见解析;(1)证明见解析;(1)2.
21、(1)4 (2)(0,5)
22、(1)-<x≤2;(2)x>3或x<﹣2
23、(1)S=;(2)y=﹣x+;(3)s=﹣m+,(0≤m≤),Q(0,).
24、(1)见详解;(2),理由见详解
25、(1)AB=2PE;(2)成立,理由见解析;(3)点D.
26、 (1)计划36座的新能源客车6辆,共有218名志愿者;(2)调配36座新能源客车3辆,22座新能源客车5辆.
分组
划记
频数
2.0<x≤3.5
正正
11
3.5<x≤5.0
19
5.0<x≤6.5
6.5<x≤8.0
8.0<x≤9.5
2
合计
50
1.线段垂直平分线
我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线是线段的垂直平分线,是上任一点,连结.将线段沿直线对折,我们发现与完全重合.由此即有:
线段垂直平分线的性质定理线段垂直平分线上的点到线段两端的距离相等.
已知:如图,垂足为点,点是直线上的任意一点.
求证:.
分析图中有两个直角三角形和,只要证明这两个三角形全等,便可证得.
江西省宜春九中学2023-2024学年九上数学期末监测模拟试题含答案: 这是一份江西省宜春九中学2023-2024学年九上数学期末监测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2023-2024学年江西省宜春实验中学数学九年级第一学期期末经典模拟试题含答案: 这是一份2023-2024学年江西省宜春实验中学数学九年级第一学期期末经典模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,方程等内容,欢迎下载使用。
2023-2024学年江西省宜春实验中学九年级数学第一学期期末综合测试试题含答案: 这是一份2023-2024学年江西省宜春实验中学九年级数学第一学期期末综合测试试题含答案,共7页。试卷主要包含了答题时请按要求用笔,若函数y=等内容,欢迎下载使用。