湖南省长沙市长沙明德中学2023-2024学年八年级数学第一学期期末学业水平测试试题含答案
展开
这是一份湖南省长沙市长沙明德中学2023-2024学年八年级数学第一学期期末学业水平测试试题含答案,共7页。试卷主要包含了若分式方程无解,则的值为,若x2﹣2,下列命题是真命题的是,4的算术平方根是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.若,则对于任意一个a的值,x一定是( )
A.x0
2.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形( )
A.,B.,
C.,D.,
3.下列各式中,从左到右的变形是因式分解的是( )
A.B.
C.D.
4.若分式方程无解,则的值为( )
A.5B.4C.3D.0
5.如图,在四边形ABCD中,,,,.分别以点A、C为圆心,大于长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为( )
A.B.4C.3D.
6.若x2﹣2(k﹣1)x+9是完全平方式,则k的值为( )
A.±1B.±3C.﹣1或3D.4或﹣2
7.下列命题是真命题的是( )
A.中位数就是一组数据中最中间的一个数
B.一组数据的众数可以不唯一
C.一组数据的标准差就是这组数据的方差的平方根
D.已知a、b、c是Rt△ABC的三条边,则a2+b2=c2
8.如图,在四边形中,添加下列一个条件后,仍然不能证明,那么这个条件是( )
A.B.平分C.D.
9.若关于的方程有正数根,则的取值范围是( )
A.B.C.D.且
10.4的算术平方根是( )
A.-2B.2C.D.
二、填空题(每小题3分,共24分)
11.如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax﹣3的解集为_____.
12.如图,将绕着顶点逆时针旋转使得点落在上的处,点落在处,联结,如果,,那么__________.
13.请将命题"等腰三角形的底角相等"改写为"如果……,那么……"的形式:____________________________________.
14.如图,将三角形纸片(△ABC)进行折叠,使得点B与点A重合,点C与点A重合,压平出现折痕DE,FG,其中D,F分别在边AB,AC上,E,G在边BC上,若∠B=25°,∠C=45°,则∠EAG的度数是_____°.
15.如图,平面直角坐标系中有点A(0,1)、B(,0).
连接AB,以A为圆心,以AB为半径画弧,交y轴于点P1;
连接BP1,以B为圆心,以BP1为半径画弧,交x轴于点P2;
连接P1P2,以P1为圆心,以P1P2为半径画弧,交y轴于点P3;
按照这样的方式不断在坐标轴上确定点Pn的位置,那么点P6的坐标是_____.
16.分解因式___________
17.已知2m=a,32n=b,则23m+10n=________.
18.如图,在四边形ABCD中,AD∥BC,AD=5,BC=18,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒3个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动,当运动时间t秒时,以点P,Q,E,D为顶点的四边形是平行四边形,则t的值为_____.
三、解答题(共66分)
19.(10分)如图,已知AB∥CD,∠A=40°.点P是射线AB上一动点(与点A不重合),CE、CF分别平分∠ACP和∠DCP交射线AB于点E、F.
(1)求∠ECF的度数;
(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;
(3)当∠AEC=∠ACF时,求∠APC的度数.
20.(6分)如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交于点B,过点B的直线交x轴于点C,且AB=BC.
(1)求直线BC的解析式;
(2)点P为线段AB上一点,点Q为线段BC延长线上一点,且AP=CQ,设点Q横坐标为m,求点P的坐标(用含m的式子表示,不要求写出自变量m的取值范围);
(3)在(2)的条件下,点M在y轴负半轴上,且MP=MQ,若∠BQM=45°,求直线PQ的解析式.
21.(6分)已知:如图所示,△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线段BD、CE,垂足分别D、E.
(1)求证:DE=BD+CE.
(2)如果过点A的直线经过∠BAC的内部,那么上述结论还成立吗?请画出图形,直接给出你的结论(不用证明).
22.(8分)某校为美化校园环境,安排甲、乙两个工程队独立完成面积为400m2的绿化区域.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
(2)若学校计划对面积为1800m2的区域进行绿化,每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
23.(8分)有10名合作伙伴承包了一块土地准备种植蔬菜,他们每人可种茄子3亩或辣椒2亩,已知每亩茄子平均可收入0.5万元,每亩辣椒平均可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排多少人种茄子?
24.(8分)综合与实践
已知,在Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕点D旋转,它的两边分别交AC,CB(或它们的延长线)于点E,F.
(1)(问题发现)
如图1,当∠EDF绕点D旋转到DE⊥AC于点E时(如图1),
①证明:△ADE≌△BDF;
②猜想:S△DEF+S△CEF= S△ABC.
(2)(类比探究)
如图2,当∠EDF绕点D旋转到DE与AC不垂直时,且点E在线段AC上,试判断S△DEF+S△CEF与S△ABC的关系,并给予证明.
(3)(拓展延伸)
如图3,当点E在线段AC的延长线上时,此时问题(2)中的结论是否成立?若成立,请给予证明;若不成立,S△DEF,S△CEF,S△ABC又有怎样的关系?(写出你的猜想,不需证明)
25.(10分)证明:如果两个三角形有两个角及它们的夹边的高分别相等,那么这两个三角形全等.
26.(10分)在△ABC中,CD⊥AB于点D,DA=DC=4,DB=1,AF⊥BC于点F,交DC于点E.
(1)求线段AE的长;
(1)若点G是AC的中点,点M是线段CD上一动点,连结GM,过点G作GN⊥GM交直线AB于点N,记△CGM的面积为S1,△AGN的面积为S1.在点M的运动过程中,试探究:S1与S1的数量关系
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、D
4、A
5、A
6、D
7、B
8、D
9、A
10、B
二、填空题(每小题3分,共24分)
11、x>﹣2
12、
13、如果一个三角形是等腰三角形,那么它的两个底角相等
14、40°
15、 (27,0)
16、
17、a3b2
18、2秒或3.5秒
三、解答题(共66分)
19、(1)70°;(2)不变.数量关系为:∠APC=2∠AFC.(3)70°.
20、(1)y=﹣2x+6;(2)点P(m﹣6,2m﹣6);(3)y=﹣x+
21、(1)见解析;(2)上述结论不成立.
22、(1)甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)至少应安排甲队工作10天.
23、最多只能安排4人种茄子.
24、(1)①证明见解析;②;
(2)上述结论成立;理由见解析;
(3)不成立;S△DEF﹣S△CEF=;理由见解析.
25、详见解析
26、(1);(1)S1+S1=4,见解析
相关试卷
这是一份湖南省长沙市长沙明德中学2023-2024学年数学九上期末经典试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,方程的解是,如图,函数y=kx+b,方程x2+5x=0的适当解法是,如图所示的几何体的左视图是等内容,欢迎下载使用。
这是一份湖南省长沙市明德麓谷学校2023-2024学年九上数学期末学业水平测试模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,抛物线的对称轴是,如图,已知∥∥,,那么的值是等内容,欢迎下载使用。
这是一份2023-2024学年湖南省长沙市实验中学数学九年级第一学期期末学业水平测试模拟试题含答案,共8页。试卷主要包含了方程的根为等内容,欢迎下载使用。