贵州省铜仁市思南县2023-2024学年八年级数学第一学期期末调研模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.如图,△ABC中,AB=AC,AD⊥BC于点D,点E是AB的中点,点F在AD上,当△BEF周长最小时,点F的位置在( )
A.AD 的中点B.△ABC的重心
C.△ABC三条高线的交点D.△ABC三边中垂线的交点
2.程老师制作了如图1所示的学具,用来探究“边边角条件是否可确定三角形的形状”问题,操作学具时,点Q在轨道槽AM上运动,点P既能在以A为圆心、以8为半径的半圆轨道槽上运动,也能在轨道槽QN上运动,图2是操作学具时,所对应某个位置的图形的示意图.
有以下结论:
①当∠PAQ=30°,PQ=6时,可得到形状唯一确定的△PAQ
②当∠PAQ=30°,PQ=9时,可得到形状唯一确定的△PAQ
③当∠PAQ=90°,PQ=10时,可得到形状唯一确定的△PAQ
④当∠PAQ=150°,PQ=12时,可得到形状唯一确定的△PAQ
其中所有正确结论的序号是( )
A.②③B.③④C.②③④D.①②③④
3.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是( )
A.角平分线上的点到这个角两边的距离相等
B.角的内部到角的两边的距离相等的点在角的平分线上
C.三角形三条角平分线的交点到三条边的距离相等
D.以上均不正确
4.下列给出的三条线段的长,能组成直角三角形的是( )
A.B.C.D.
5.下列因式分解正确的是( )
A.x2﹣4=(x+4)(x﹣4)B.x2+2x+1=x(x+2)+1
C.3mx﹣6my=3m(x﹣6y)D.2x+4=2(x+2)
6.一个多边形的内角和等于外角和的两倍,那么这个多边形是( )
A.三边形B.四边形C.五边形D.六边形
7.的立方根是( )
A.±2B.±4C.4D.2
8.下列从左边到右边的变形,是因式分解的是( )
A.y2﹣2y+4=(y﹣2)2
B.10x2﹣5x=5x(2x﹣1)
C.a(x+y)=ax+ay
D.t2﹣16+3t=(t+4)(t﹣4)+3t
9.如图,,,则图中等腰三角形的个数是( )
A.5B.6C.8D.9
10.下列添括号正确的是( )
A.B.
C.D.
二、填空题(每小题3分,共24分)
11.如图,一个密封的圆柱形油罐底面圆的周长是10m,高为13m,一只壁虎在距底面1m的A处,C处有食物,壁虎沿油罐的外侧面爬行到C处捕食,它爬行的最短路线长为_____m.
12.如图△ABC中,∠ABC、∠ACB的平分线相交于点O,若∠A = 100°,则∠BOC = ____.
13.已知一组数据:2,4,5,6,8,则它的方差为__________.
14.如果是一个完全平方式,则的值是_________.
15.已知一次函数的图象经过点A(2,-1)和点B,其中点B是另一条直线与y轴的交点,求这个一次函数的表达式___________
16.已知是方程3x﹣my=7的一个解,则m= .
17.如图,在平面直角坐标系中,长方形OABC的顶点O在坐标原点,顶点A、C分别在x、y轴的正半轴上:OA=3,OC=4,D为OC边的中点,E是OA边上的一个动点,当△BDE的周长最小时,E点坐标为_____.
18.若(x2﹣a)x+2x的展开式中只含有x3这一项,则a的值是_____.
三、解答题(共66分)
19.(10分)如图,,点、分别在边、上,且,请问吗?为什么?
20.(6分)如图①是一个长为,宽为的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图②形状拼成一个正方形.
(1)若,.求图②中阴影部分面积;
(2)观察图②,写出,,三个代数式之间的等量关系.(简要写出推理过程)
(3)根据(2)题的等量关系,完成下列问题:若,,求的值.
21.(6分)如图是由边长为1的小正方形组成的网格,直线是一条网格线,点,在格点上,的三个顶点都在格点(网格线的交点)上.
(1)作出关于直线对称的;
(2)在直线上画出点,使四边形的周长最小;
(3)在这个网格中,到点和点的距离相等的格点有_________个.
22.(8分)阅读理解
在平面直角坐标系xy中,两条直线l1:y=k1x+b1(k1≠0),l2:y=k2x+b2(k2≠0),①当l1∥l2时,k1=k2,且b1≠b2;②当l1⊥l2时,k1·k2=-1.
类比应用
(1)已知直线l:y=2x-1,若直线l1:y=k1x+b1与直线l平行,且经过点A(-2,1),试求直线l1的表达式;
拓展提升
(2)如图,在平面直角坐标系xy中,△ABC的顶点坐标分别为:A(0,2),B(4,0),C(-1,-1),试求出AB边上的高CD所在直线的表达式.
23.(8分)如图,点B,F,C,E在一条直线上,∠A=∠D,AC=DF,且AC∥DF.求证:△ABC≌△DEF.
24.(8分)根据以下10个乘积,回答问题:
11×29;12×28;13×27;14×26;15×25;16×24;17×23;18×22;19×21;1×1.
(1)将以上各乘积分别写成“a2﹣b2”(两数平方)的形式,将以上10个乘积按照从小到大的顺序排列起来;
(2)用含有a,b的式子表示(1)中的一个一般性的结论(不要求证明);
(3)根据(2)中的一般性的结论回答下面问题:某种产品的原料提价,因而厂家决定对产品进行提价,现有两种方案方案:第一次提价p%,第二次提价q%;方案2:第一、二次提价均为%,其中p≠q,比较哪种方案提价最多?
25.(10分)阅读下面材料,完成(1)-(3)题:数学课上,老师出示了这样一道题:如图1,点是正边上一点以为边做正,连接.探究线段与的数量关系,并证明.同学们经过思考后,交流了自已的想法:
小明:“通过观察和度量,发现与相等.”
小伟:“通过全等三角形证明,再经过进一步推理,可以得到线段平分.”
老师:“保留原题条件,连接,是的延长线上一点,(如图2),如果,可以求出、、三条线段之间的数量关系.”
(1)求证;
(2)求证线段平分;
(3)探究、、三条线段之间的数量关系,并加以证明.
26.(10分)计算:+(π﹣3.14)1.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、B
4、D
5、D
6、D
7、D
8、B
9、C
10、C
二、填空题(每小题3分,共24分)
11、1
12、1
13、1
14、1或-1
15、y=-2x+1
16、.
17、 (1,0)
18、1
三、解答题(共66分)
19、,证明见解析
20、(1);(2)或,过程见解析;(3)
21、(1)见详解;(2)见详解;(3)1
22、(1)y=2x+5;(2)y=2x+1.
23、见解析;
24、(1)答案见解析;(2)对于:ab,当|b﹣a|越大时,ab的值越小;(3)方案2提价最多.
25、(1)见解析;(2)见解析;(3),理由见解析
26、.
2023-2024学年贵州省铜仁市思南县数学九年级第一学期期末综合测试模拟试题含答案: 这是一份2023-2024学年贵州省铜仁市思南县数学九年级第一学期期末综合测试模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,sin 30°的值为等内容,欢迎下载使用。
2023-2024学年贵州省铜仁市思南县九上数学期末统考模拟试题含答案: 这是一份2023-2024学年贵州省铜仁市思南县九上数学期末统考模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
贵州省思南县联考2023-2024学年数学八上期末统考模拟试题含答案: 这是一份贵州省思南县联考2023-2024学年数学八上期末统考模拟试题含答案,共7页。试卷主要包含了下列运算中正确的是等内容,欢迎下载使用。